
Dario Faggioli <dfaggioli@suse.com>
Software Engineer - Virtualization Specialist, SUSE
GPG: 4B9B 2C3A 3DD5 86BD 163E 738B 1642 7889 A5B8 73EE
https://about.me/dario.faggioli
https://www.linkedin.com/in/dfaggioli/
https://twitter.com/DarioFaggioli (@DarioFaggioli)

Speculative Execution HW BUGs,
Virtualization & Other Things...

mailto:dfaggioli@suse.com
https://about.me/dario.faggioli
https://www.linkedin.com/in/dfaggioli/
https://twitter.com/DarioFaggioli

Myself, my Company,
what we’ll cover today...

About myself: Work
• Ing. Inf @ UniPI

– B.Sc. (2004) “Realizzazione di primitive e processi esterni per la gestione della
memoria di massa” (Adv.s: Prof. G. Frosini, Prof. G. Lettieri

– M.Sc (2007) “Implementation and Study of the BandWidth Inheritance protocol in
the Linux kernel” (Adv.s: Prof. P. Ancilotti, Prof. G. Lipari)

• Ph.D on Real-Time Scheduling @ ReTiS Lab, SSSUP, Pisa;
co-authored SCHED_DEADLINE, now in mainline Linux

• Senior Software Engineer @ Citrix, 2011; contributor to
The Xen-Project, maintainer of the Xen’s scheduler

• Virtualization Software Engineer @ SUSE, 2018; still Xen, but also KVM, QEMU,
Libvirt. Focuson performance evaluation & improvement

• https://about.me/dario.faggioli , https://dariofaggioli.wordpress.com/about/

http://www.ing.unipi.it/it/
https://www.unipi.it
https://retis.sssup.it/
https://www.santannapisa.it/
https://www.citrix.com
https://www.suse.com
https://about.me/dario.faggioli
https://dariofaggioli.wordpress.com/about/

About my Company: SUSE

• We’re one of the oldest Linux company (1992!)
• We’re the “open, Open Source company”
• We like changing name:

S.u.S.E. → SuSE → SUSE
• We make music parodies
• Our motto is: “Have a lot of fun!”

Academic program:
suse.com/academic/
We’re (~always) hiring:
suse.com/company/careers

https://goo.gl/ENw7Mj
https://www.suse.com/academic/
https://www.suse.com/company/careers/
https://www.youtube.com/watch?v=4VrhlyIgo3M

Spectre, Meltdown & Friends

● Spectre v1 - Bounds Check Bypass
● Spectre v2 - Branch Target Isolation
● Meltdown - Rogue Data Cash Load (a.k.a. Spectre v3)
● Spectre v3a- Rogue System Register Read
● Spectre v4 - Speculative Store Bypass
● LazyFPU - Lazy Floating Point State Restore
● L1TF - L1 Terminal Fault (a.k.a. Foreshadow)
● MDS - Microarch. Data Sampling (a.k.a. Fallout, ZombieLoad, …)

Will cover: Meltdown. Maybe Spectre. Maybe L1TF
Stop me and ask (or ask at the end, or ask offline)
Spotted a mistake? Do not hesitate point’n out... Thanks! ;-)

CPU, Memory, Caches, Pipelines,
Speculative Execution...

CPU are fast, memory is slow

CPU, Memory

What is Speculative Execution?

https://www.extremetech.com/computing/261792-what-is-speculative-execution

CPU, Memory, Cache(s)

CPU are fast, memory is slow
• Cache == fast memory
• But we can’t use it as main memory:

– takes a lot of space on a chip
– costs a lot of money
– consumes a lot of power
– …

• On the CPU chip
– takes most of the space in

nowadays CPU CPUs, actually
• It’s not cache, it’s caches

– there’s more than 1;
– organized hierarchically

Portable Hardware Locality (hwloc)

https://www.open-mpi.org/projects/hwloc/

CPU, Memory, Cache(s) Portable Hardware Locality (hwloc)

https://www.open-mpi.org/projects/hwloc/

Cache(s): how faster are we talking about?

i7-6700 Skylake 4.0 GHz access latencies:
• L1 cache : 4 cycles (direct pointer)
• L1 cache : 5 cycles (complex addr. calculations)
• L2 cache : 11 cycles
• L3 cache : 39 cycles
• Memory : 100 ~ 200 cycles

Latency Numbers Every Programmer Should Know (do check this website!):
• L1 cache : 1 ns
• L2 cache : 4 ns
• Memory : 100 ns
• Tx 2KB, 1 Gbps network : 20,000 ns (20 µs)
• SSD random read : 150,000 ns (150 µs)
• Rotational disk seek : 10,000,000 ns (10 ms)

https://www.7-cpu.com/cpu/Skylake.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

Cache(s): how faster are we talking about?

Real life parallelism:
• 1 CPU Cycle 0.3 ns 1 s
• Level 1 cache 0.9 ns 3 s
• Level 2 cache 2.8 ns 9 s
• Level 3 cache 12.9 ns 43 s
• Memory 120 ns > 6 min
• SSD I/O 50 - 150 us 2-6 days
• Rotational disk I/O 1-10 ms 1-12 months

Oh, and do check-out
this video too!

http://sgros.blogspot.com/2014/08/memory-access-latencies.html

https://www.youtube.com/watch?v=JEpsKnWZrJ8
https://www.youtube.com/watch?v=JEpsKnWZrJ8
http://sgros.blogspot.com/2014/08/memory-access-latencies.html

Caches: how do they work

• Address: splitted [Index,Tag]
• Lookup Index: gives you one or more tags ⇒ match your Tag

or 64, or 128, ...

Caches: how do they work

• Address: splitted [Index, Tag]
• Lookup Index: gives you one or more tags ⇒ match your Tag

CPU, Memory, Cache(s), TLB(s)

CPU are fast, memory is slow
• Even with caches

CPU, Memory, Cache(s), TLB(s)

Virtual Memory
• Address: virtual ⇒ physical,

translated via a table
• … via a set of tables (we

want it sparse!)
• Address split:

[L4off,L3off,L2off,L1off,off]
• Page Table:

– Setup by CPU within MMU
– Translation done by MMU,

walking the page table
– A walk for each memory reference?

No! No! No! No!
… … … 5 lvl page table is here!

https://lwn.net/Articles/717293/

CPU, Memory, Cache(s), TLB(s)

Transitional Lookaside Buffer (TLB)
• A cache for virtual address

translations
• On memory reference,

check TLB:
– Hit: we saved a page table walk!
– Miss: page table walk needed...

Latency:
● TLB hit: ~ cache hit, 4 cycles / 4 ns
● Page Table Walk: 4~5 memory accesses,

100 cycles / 100ns each!

Hierarchy of TLBs
● Instruction L1 TLB
● Data L1 TLB
● I+D L2 TLB (called STLB)

Superscalar Architectures

CPU are fast, memory is slow
• Even with caches
• Even with TLBs

Superscalar Architectures

CPU executing an instruction:

• F: fetch the instruction from memory/cache
• D: decode instruction:

E.g., 01101101b == ADD %eax,*(%ebx)
• E: execute instruction

do it. E.g., do the add, in CPU’s ALU, etc
• W: write result back

update actual registers & caches/memory locations

F D E W

Superscalar Architectures

CPU executing multiple instructions:

One after the other… … … slow! :-/

F1 D1 E1 W1

F2 D2 E2 W2

F3 D3 E3 W3

F4 D4 E4 W4

Instr. 1 Instr. 2

Superscalar Architectures: pipelining

In-order execution, pipelined
• 0: Four instructions are waiting to be executed
• 1: green enters pipeline (e.g., IF)
• …
• 4: pipeline full

4 stages ⇒ 4 inst. In flight
• 5: green completed
• …
• 8: all completed

Wikipedia: Instruction Pipelining

Somewhat there (pipelining), even in "sixty-five-oh-two" or "six-five-oh-two", the CPU of Apple II
and Comodore VIC-20, back in 1975

https://en.wikipedia.org/wiki/Instruction_pipelining
https://en.wikipedia.org/wiki/MOS_Technology_6502

Superscalar Architectures: pipelining

In-order execution, pipelined
• 0: Four instructions are waiting to be executed
• 1: green enters pipeline (e.g., IF)
• …
• 4: pipeline full

4 stages ⇒ 4 inst. In flight
• 5: green completed
• …
• 8: all completed

Wikipedia: Instruction Pipelining

Instruction Level Parallelism

https://en.wikipedia.org/wiki/Instruction_pipelining

Superscalar Architectures: n-th issue
Double the game, double ILP, increase ILP

FG

FH

DE

DF

EC

ED

WA

WB

FI

FL

DG

DH

EE

EF

WC

WD

FM

FN

DI

DL

EG

EH

WE

WF

FO

FP

DM

DN

EI

EL

WG

WH

FQ

FR

DO

DP

EM

EN

WI

WL

4 pipeline stages, 8 instructions in flight:
1. Instr. A, instr. B: write-back
2. E, F: execute
3. I, L: decode
4. F, P: fetch

(... … … theoretically)

Pentium, 1993,
First CPU with
“double issue”
superscalar
execution

King of there back in 1966 already!

https://en.wikipedia.org/wiki/Superscalar_processor
https://en.wikipedia.org/wiki/Superscalar_processor

Superscalar Architectures: n-th issue
Double the game, double ILP, increase ILP

FG

FH

DE

DF

EC

ED

WA

WB

FI

FL

DG

DH

EE

EF

WC

WD

FM

FN

DI

DL

EG

EH

WE

WF

FO

FP

DM

DN

EI

EL

WG

WH

FQ

FR

DO

DP

EM

EN

WI

WL

4 pipeline stages, 8 instructions in flight:
1. Instr. A, instr. B: write-back
2. E, F: execute
3. I, L: decode
4. F, P: fetch

But don’t go too far… Or you’ll get Itanium! Explicitly
parallel instruction computing / Very long instruction word)

Pentium, 1993,
First CPU with
“double issue”
superscalar
execution

King of there back in 1966 already!

https://en.wikipedia.org/wiki/Itanium
https://en.wikipedia.org/wiki/Explicitly_parallel_instruction_computing
https://en.wikipedia.org/wiki/Explicitly_parallel_instruction_computing
https://en.wikipedia.org/wiki/Very_long_instruction_word
https://en.wikipedia.org/wiki/Superscalar_processor
https://en.wikipedia.org/wiki/Superscalar_processor

Superscalar Architectures: deeper pipes

The smaller the stage, the faster clock can run
• 486 (1989), 3 stages 100 MH
• P5 [Pentium] (1993), 5 stages, 300 MHz
• P6 [Pentium Pro, Pentium II, Pentium III] (1995-1999), 12-14

stages, 450 MHz-1.4 GHz
• NetBurst, Prescott [Pentium4] (2000-2004), 20-31 stages,

2.0-3.8 GHz
• Core (2006), 12 stages, 3.0 GHz
• Nehalem (2008), 20 stages, 3.6 GHz
• Sandy Bridge, Ivy Bridge (2011-2012) 16, 4 GHz
• Skylake (2015), 16 stages, 4.2 Ghz
• Kaby Lake, Coffee Lake (2016-2017), 16 stages, 4.5 GHz
• Cannon Lake (2018), 16 stages, 4.2 GHz

https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures

https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures

Superscalar Architectures: deeper pipes

The smaller the stage, the faster clock can run
• 486 (1989), 3 stages 100 MH
• P5 [Pentium] (1993), 5 stages, 300 MHz
• P6 [Pentium Pro, Pentium II, Pentium III] (1995-1999), 12-14

stages, 450 MHz-1.4 GHz
• NetBurst, Prescott [Pentium4] (2000-2004), 20-31 stages,

2.0-3.8 GHz
• Core (2006), 12 stages, 3.0 GHz
• Nehalem (2008), 20 stages, 3.6 GHz
• Sandy Bridge, Ivy Bridge (2011-2012) 16, 4 GHz
• Skylake (2015), 16 stages, 4.2 Ghz
• Kaby Lake, Coffee Lake (2016-2017), 16 stages, 4.5 GHz
• Cannon Lake (2018), 16 stages, 4.2 GHz

https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures

But don’t go too
far… or you’ll get
Pentium4!

https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures

Superscalar Architectures: deeper pipes

The smaller the stage, the faster clock can run
• 486 (1989), 3 stages 100 MH
• P5 [Pentium] (1993), 5 stages, 300 MHz
• P6 [Pentium Pro, Pentium II, Pentium III] (1995-1999), 12-14

stages, 450 MHz-1.4 GHz
• NetBurst, Prescott [Pentium4] (2000-2004), 20-31 stages,

2.0-3.8 GHz
• Core (2006), 12 stages, 3.0 GHz
• Nehalem (2008), 20 stages, 3.6 GHz
• Sandy Bridge, Ivy Bridge (2011-2012) 16, 4 GHz
• Skylake (2015), 16 stages, 4.2 Ghz
• Kaby Lake, Coffee Lake (2016-2017), 16 stages, 4.5 GHz
• Cannon Lake (2018), 16 stages, 4.2 GHz

https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures

Current
processors

https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures

Out-of-Order Execution

CPU are fast, memory is slow
• Even with caches
• Even with TLBs
• Even with pipeline

Pipeline and out-of-order instruction execution optimize performance

Out-of-Order Execution

In-order execution, pipelined
• Instructions takes variable

amount of time
• If an (phase of an) instruction

takes a lot of time?
Stalls / bubbles

• Could have I done something
else while waiting? YES!

But not delay slots! From (old) RISCs, right
now only popular in some DSP (probably)

https://renesasrulz.com/doctor_micro/rx_blog/b/weblog/posts/pipeline-and-out-of-order-instruction-execution-optimize-performance
https://www.pagetable.com/?p=313

In-order execution, pipelined
• Instructions takes variable

amount of time
• If an (phase of an) instruction

takes a lot of time?
Stalls / bubbles

• Could have I done something
else while waiting? YES!

Pipeline and out-of-order instruction execution optimize performance

Out-of-Order Execution

“Dataflow architecture is a computer architecture that directly contrasts
the traditional von Neumann architecture or control flow architecture.
Dataflow architectures do not have a program counter, or (at least
conceptually) the executability and execution of instructions is solely
determined based on the availability of input arguments to the instructions,
so that the order of instruction execution is unpredictable: i. e. behavior is
nondeterministic.”

But not delay slots! From (old) RISCs, right
now only popular in some DSP (probably)

https://renesasrulz.com/doctor_micro/rx_blog/b/weblog/posts/pipeline-and-out-of-order-instruction-execution-optimize-performance
https://en.wikipedia.org/wiki/Dataflow_architecture
https://www.pagetable.com/?p=313

Out-of-Order Execution

Pipeline and out-of-order instruction execution optimize performance

1. Fetch a bunch of instructions; stash
them in a queue (Reservation Station)

2. Fetch operands, e.g., from memory
2. Execute instructions from the queue

with operands ready ⇒ issued to the
appropriate stage

3. Instructions leaves queue (might be
before “earlier” instructions) ⇒ results
queued (Reorder Buffer, ROB)

4. Instruction completes (retires) after all
earlier instructions also completed

in
 p

ar
al

le
l!

Tomasulo algorithm, IBM, 1967
⇒ adopted by Pentium Pro (P6 family), 1995

https://renesasrulz.com/doctor_micro/rx_blog/b/weblog/posts/pipeline-and-out-of-order-instruction-execution-optimize-performance
https://en.wikipedia.org/wiki/Tomasulo_algorithm

Tomasulo algorithm, IBM, 1967
⇒ adopted by Pentium Pro (P6 family), 1995

Out-of-Order Execution

Pipeline and out-of-order instruction execution optimize performance

1. Fetch a bunch of instructions; stash
them in a queue (Reservation Station)

2. Fetch operands (e.g., from memory)
2. Execute instructions from the queue

with operands ready ⇒ issued to the
appropriate stage

3. Instructions leaves queue (might be
before “earlier” instructions) ⇒ results
queued (Reorder Bufffer, ROB)

4. Instruction completes (retires) after all
earlier instructions also completed

in
 p

ar
al

le
l!

In Order

In Order

Out of Order

https://en.wikipedia.org/wiki/Tomasulo_algorithm
https://renesasrulz.com/doctor_micro/rx_blog/b/weblog/posts/pipeline-and-out-of-order-instruction-execution-optimize-performance

Speculative Execution

CPU are fast, memory is slow
• Even with caches
• Even with TLBs
• Even with pipeline
• Even with out-of-order execution

Speculative Execution

CPU are fast, memory is slow
• Even with caches
• Even with TLBs
• Even with pipeline
• Even with out-of-order execution

How come we’re still in trouble?
• Branches: if, loops, function calls/returns …
• Out of Order Exec. works great for data-dependencies
• Branches are “control flow-dependencies”

– If I don’t know what I’ll execute next, I can’t reorder instructions!

Branches
Unconditional branches (func.
call, func. ret, jmp, …)

Conditional branches
(if, loops, …)

IF D E M WB

IF D E M WB Unconditional branch

IF?

IF D E M WB

IF D E M WB Unconditional (direct) branch

IF D E M WB

IF D E M WB Unconditional (indirect) branch

IF D E M WB

IF D E M WB

IF D E M WB

IF D E M WB Conditional branch

IF?

IF D E M WB

IF D E M WB Conditional (direct) branch

IF D E M WB

IF D E M WB Conditional (indirect) branch

IF D E M WB

IF D E M WB

Out-of-Order + Speculative Execution

Yeah, whatever!! Reorder buffer is there, let’s use it...
• Ignore control-flow dependencies: execute instructions anyway
• We “occupy” stalls, so we’re no any slower!

IF D E M WB

IF D E M WB

IF D E M WB

IF D E M WB

IF D E M WB

IF D E M WB

Conditional (indirect) branch

Stalls: CPU
execution
units are idle

Out-of-Order + Speculative Execution

IF D E M WB

IF D E M WB

IF D E M WB

IF D E M WB

IF D E M WB

IF D E M WB

Actual instructions!
…
…
...
But which ones?
Fetched from where?
etc.

Yeah, whatever!! Reorder buffer is there, let’s use it...
• Ignore control-flow dependencies: execute instructions anyway
• We “occupy” stalls, so we’re no any slower!

Out-of-Order + Speculative Execution

IF D E M WB

IF D E M WB

IF D E M WB

IF D E M WB

IF D E M WB

IF D E M WB

Actual instructions!
…
…
...
But which ones?
Fetched from where?
etc.

Whatever instructions they
are, I’m not any slower

Yeah, whatever!! Reorder buffer is there, let’s use it...
• Ignore control-flow dependencies: execute instructions anyway
• We “occupy” stalls, so we’re no any slower!

Out-of-Order + Speculative Execution

IF D E M WB

IF D E M WB

IF D E M WB

IF D E M WB

IF D E M WB

IF D E M WB

Actual instructions!
…
…
...
But which ones?
Fetched from where?
etc.

Whatever instructions they
are, I’m not any slower

If they could be the right
ones, I’ll be faster!!!

Yeah, whatever!! Reorder buffer is there, let’s use it...
• Ignore control-flow dependencies: execute instructions anyway
• We “occupy” stalls, so we’re no any slower!

Out-of-Order + Speculative Execution

IF D E M WB

IF D E M WB

IF D E M WB

IF D E M WB

IF D E M WB

IF D E M WB

Actual instructions!
…
…
...
But which ones?
Fetched from where?
etc.

Whatever instructions they
are, I’m not any slower

If they could be the right
ones, I’ll be faster!!!

But:
Q: How do I tell which are the
right ones, and where are they?

Yeah, whatever!! Reorder buffer is there, let’s use it...
• Ignore control-flow dependencies: execute instructions anyway
• We “occupy” stalls, so we’re no any slower!

Out-of-Order + Speculative Execution

IF D E M WB

IF D E M WB

IF D E M WB

IF D E M WB

IF D E M WB

IF D E M WB

Actual instructions!
…
…
...
But which ones?
Fetched from where?
etc.

Whatever instructions they
are, I’m not any slower

If they could be the right
ones, I’ll be faster!!!

But:
Q: How do I tell which are the
right ones, and where are they?
A: I guess… Even better: I try to
predict!

Yeah, whatever!! Reorder buffer is there, let’s use it...
• Ignore Guess control-flow dependencies: execute instructions anyway
• We “occupy” stalls, so we’re no any slower!

Out-of-Order + Speculative Execution

IF D E M WB

IF D E M WB

IF D E M WB

IF D E M WB

IF D E M WB

IF D E M WB

Actual instructions!
…
…
...
But which ones?
Fetched from where?
etc.

Whatever instructions they
are, I’m not any slower

If they could be the right
ones, I’ll be faster!!!

But:
Q: How do I tell which are the
right ones, and where are they?
A: I guess… Even better: I try to
predict!
Q: Ok, cool! But wait, what if you
guess wrong (mispredict)? :-O

Yeah, whatever!! Reorder buffer is there, let’s use it...
• Ignore Guess control-flow dependencies: execute instructions anyway
• We “occupy” stalls, so we’re no any slower!

Out-of-Order + Speculative Execution

Yeah, whatever!! Reorder buffer is there, let’s use it...
• Ignore Guess control-flow dependencies: execute instructions anyway
• We “occupy” stalls, so we’re no any slower!

Execute them speculatively:
• Execute them but defer (some of their) effects
• Until we know whether they’ll run “for real”

– If yes, apply the effects (memory/register writes, exceptions, ...)
– If no, throw everything away

Q: Ok, cool! But wait, what if you
guess wrong (mispredict)? :-O

Out-of-Order + Speculative Execution

Yeah, whatever!! Reorder buffer is there, let’s use it...
• Ignore Guess control-flow dependencies: execute instructions anyway
• We “occupy” stalls, so we’re no any slower!

Execute them speculatively:
• Execute them but defer (some of their) effects
• Until we know whether they’ll run “for real”

– If yes, apply the effects (memory/register writes, exceptions, ...)
– If no, throw everything away

Q: Ok, cool! But wait, what if you
guess wrong (mispredict)? :-O

Branch Prediction

How do we guess:
1. Whether or not a conditional branch (if, loops) will be taken

or not taken
2. Where or not an unconditional direct branch (function call,

function return) or an unconditional indirect branch (function
pointer) branch will be taken or not taken

We can’t. We can predict (e.g., basing on previous history):
1. Branch predictors
2. Branch Target Buffer, Return Stack Buffer

Branch Prediction

How do we guess direct branches (if, loops)
• Static prediction: no runtime knowledge

– Always taken (loops! + loops execute multiple times… by definition!): 70% correct
– Backward taken, forward not taken (BTFNT), (loops again! + compiler

help), PPC 601 (1993): 80% correct
• Dynamic prediction:

look at history, at runtime
– 1 bit history, predict basing on last occurrence, DEC/MIPS (1992/1994): 85% correct
– 2 bit history, “often taken” == always taken, Pentium (1993): 90% correct
– Store history, ‘100100’ == taken once every 3 times, Pentium II (1997): 93% correct
– Multilevel “agree” predictor, PA-RISC (2001): 95% correct
– Neural networks, AMD Zen/Bulldozer (2001)
– Geometric predictor, predictor chaining, Intel (2006)

Kernel Recipes 2018 - Meltdown and Spectre: seeing through the magician’s tricks
http://danluu.com/branch-prediction/

https://www.youtube.com/watch?v=JzlaJjZh3R0
http://danluu.com/branch-prediction/

Branch Prediction

How do we guess direct branches (if, loops)

0x002 if (A)
0x003 do_A()
0x004 do_notA()

 ...
 ...
 ...

Predictor
...
...
Pred. for branch at 0x003
...

Branch Prediction

How do we guess direct branches (if, loops)

0x002 if (A)
0x003 do_A()
0x004 do_notA()

 ...
 ...
 ...

Predictor
...
...
Pred. for branch at 0x003
...

CPU: branch taken, no prediction
begin[if (A)]
...
...
end[if (A)] == true, branch!
begin[do_A()]
...
end[do_A()]

Branch Prediction

How do we guess direct branches (if, loops)

0x002 if (A) //true
0x003 do_A()
0x004 do_notA()

 ...
 ...
 ...

1 = taken

Predictor
...
...
Pred. for branch at 0x002
...

CPU: branch taken, no prediction
begin[if (A)]
...
...
end[if (A)] == true, branch!
begin[do_A()]
...
end[do_A()]

CPU: branch taken, ok prediction
begin[if (A)]
check_pred[0x002] ⇐ taken
spec_begin[do_A()]
end[if (A)] == true, branch!
...
spec_commit[do_A()] == end[do_A()]
...Finished do_A() earlier!

Branch Prediction

How do we guess direct branches (if, loops)

0x002 if (A) //true
0x003 do_A()
0x004 do_notA()

 ...
 ...
 ...

0 = not
taken

Predictor
...
...
Pred. for branch at 0x002
...

CPU: branch taken, no prediction
begin[if (A)]
...
...
end[if (A)] == true, branch!
begin[do_A()]
...
end[do_A()]

Finished do_A() no later!

CPU: branch taken, misprediction
begin[if (A)]
check_pred[0x002] ⇐ not taken
spec_begin[do_not(A)]
end[if (A)] == true, branch!
begin[do_A()]
spec_undo[do_notA()]
end[do_A()]

Branch Prediction

How do we guess direct branches (if, loops)

0x002 if (A)
0x003 do_A()
0x004 do_notA()

1 = taken

...

...
Pred. for branch at 0x002
...

Predictor

Branch Prediction

How do we guess direct branches (if, loops)

0x002 if (A)
0x003 do_A()
0x004 do_notA()

1 = taken

...

...
Pred. for branch at 0x002
...

(1) Check predictor

Predictor

Branch Prediction

How do we guess direct branches (if, loops)

0x002 if (A)
0x003 do_A()
0x004 do_notA()

1 = taken

...

...
Pred. for branch at 0x002
...

(1) Check predictor
(2) taken ⇒ speculatively execute do_A()

Predictor

Branch Prediction

How do we guess direct branches (if, loops)

0x002 if (A)
0x003 do_A()
0x004 do_notA()

1 = taken

...

...
Pred. for branch at 0x002
...

(1) Check predictor
(2) taken ⇒ speculatively execute do_A()
(3) Update predictor (with what really happened)

Predictor

Branch Prediction
How do we guess indirect branches (func. pointers/returns)
1. direct / indirect calls: Branch Target Buffer (BTB) ⇒ a branch cache

0x000 r1 = &f1
0x002 jmp *(r1)

 ...
0x0A6 r2 = &f2
0x0A8 jmp *(r2)

 ...
0x0FC f1() { … }
0x0FF f2() { … }

0x0FC

BTB

0x0FF

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

Branch Prediction
How do we guess indirect branches (func. pointers/returns)
1. direct / indirect calls: Branch Target Buffer (BTB) ⇒ a branch cache

0x000 r1 = &f1
0x002 jmp *(r1)

 ...
0x0A6 r2 = &f2
0x0A8 jmp *(r2)

 ...
0x0FC f1() { … }
0x0FF f2() { … }

0x0FC

BTB

0x0FF

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

Speculatively execute code at
0x0FC (== body of f1() {...})Speculatively execute code at

0x0FF (== body of f2() {...})

...

...

Branch Prediction
How do we guess indirect branches (func. pointers/returns)
1. direct / indirect calls: Branch Target Buffer (BTB) ⇒ a branch cache

2. returns: Return Stack Buffer (RSB) ⇒ a stack

EIP(“call f1”)+1 = 0x001+1 = 0x002
call f1

EIP(“call *(r2)”)+1 = 0x005call *(r2)

call f2
...

...
EIP(“call f2”) + 1 = 0x007

ret

ret

retRSB

0x001

0x004

0x006

0x01A

0x014

0x010

0x000 r1 = &f1
0x002 jmp *(r1)

 ...
0x0A6 r2 = &f2
0x0A8 jmp *(r2)

 ...
0x0FC f1() { … }
0x0FF f2() { … }

0x0FC

BTB

0x0FF

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

...

...

Branch Prediction
How do we guess indirect branches (func. pointers/returns)
1. direct / indirect calls: Branch Target Buffer (BTB) ⇒ a branch cache

2. returns: Return Stack Buffer (RSB) ⇒ a stack

EIP(“call f1”)+1 = 0x001+1 = 0x002
call f1

EIP(“call *(r2)”)+1 = 0x005call *(r2)

call f2
...

...
EIP(“call f2”) + 1 = 0x007

ret

ret

retRSB

0x001

0x004

0x006

0x01A

0x014

0x010

0x000 r1 = &f1
0x002 jmp *(r1)

 ...
0x0A6 r2 = &f2
0x0A8 jmp *(r2)

 ...
0x0FC f1() { … }
0x0FF f2() { … }

0x0FC

BTB

0x0FF

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

Speculatively execute code at:
0x005 Speculatively execute code at:

0x007

Branch Prediction: Aliasing in the BTB
How do we guess indirect branches (func. pointers/returns)
1. direct / indirect calls: Branch Target Buffer (BTB) ⇒ a cache/TLB

0x000 r1 = &f1
0x002 jmp *(r1)

 ...
0x0A6 r2 = &f2
0x0A8 jmp *(r2)

 ...
 ...
 ...

 ...
0x0FC f1() { … }
0x0FF f2() { … }
0xFA2 f3() { … }

0x0FC

BTB

0x0FF

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

BTB == an array
Indexing == a hash of jmp instr. address
(in this case, index = last hex digit)

Branch Prediction: Aliasing in the BTB
How do we guess indirect branches (func. pointers/returns)
1. direct / indirect calls: Branch Target Buffer (BTB) ⇒ a cache/TLB

0x000 r1 = &f1
0x002 jmp *(r1)

 ...
0x0A6 r2 = &f2
0x0A8 jmp *(r2)

 ...
0x0F0 r4 = &f3
0x0F2 jmp *(r4)

 ...
0x0FC f1() { … }
0x0FF f2() { … }
0xFA2 f3() { … }

0x0FC

BTB

0x0FF

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

BTB == an array
Indexing == a hash of jmp instr. address
(in this case, index = last hex digit)

Branch Prediction: Aliasing in the BTB
How do we guess indirect branches (func. pointers/returns)
1. direct / indirect calls: Branch Target Buffer (BTB) ⇒ a cache/TLB

0x000 r1 = &f1
0x002 jmp *(r1)

 ...
0x0A6 r2 = &f2
0x0A8 jmp *(r2)

 ...
0x0F0 r4 = &f3
0x0F2 jmp *(r4)

 ...
0x0FC f1() { … }
0x0FF f2() { … }
0xFA2 f3() { … }

0x0FC

BTB

0x0FF

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

BTB == an array
Indexing == a hash of jmp instr. address
(in this case, index = last hex digit)

Branch Prediction: Aliasing in the BTB
How do we guess indirect branches (func. pointers/returns)
1. direct / indirect calls: Branch Target Buffer (BTB) ⇒ a cache/TLB

0x000 r1 = &f1
0x002 jmp *(r1)

 ...
0x0A6 r2 = &f2
0x0A8 jmp *(r2)

 ...
0x0F0 r4 = &f3
0x0F2 jmp *(r4)

 ...
0x0FC f1() { … }
0x0FF f2() { … }
0xFA2 f3() { … }

0x0FC 0xFA2

BTB

0x0FF

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

BTB == an array
Indexing == a hash of jmp instr. address
(in this case, index = last hex digit)

Branch Prediction: RSB Underflow
How do we guess indirect branches (func. pointers/returns)
2. returns: Return Stack Buffer (RSB) ⇒ a stack

call

RSB

Branch Prediction: RSB Underflow
How do we guess indirect branches (func. pointers/returns)
2. returns: Return Stack Buffer (RSB) ⇒ a stack

call

RSB

Branch Prediction: RSB Underflow
How do we guess indirect branches (func. pointers/returns)
2. returns: Return Stack Buffer (RSB) ⇒ a stack

call

RSB

Branch Prediction: RSB Underflow
How do we guess indirect branches (func. pointers/returns)
2. returns: Return Stack Buffer (RSB) ⇒ a stack

call

RSB

call

Branch Prediction: RSB Underflow
How do we guess indirect branches (func. pointers/returns)
2. returns: Return Stack Buffer (RSB) ⇒ a stack

call

RSB

call

call

Branch Prediction: RSB Underflow
How do we guess indirect branches (func. pointers/returns)
2. returns: Return Stack Buffer (RSB) ⇒ a stack

call

RSB

call

call

call

Branch Prediction: RSB Underflow
How do we guess indirect branches (func. pointers/returns)
2. returns: Return Stack Buffer (RSB) ⇒ a stack

call

RSB

call

call

call

call

Branch Prediction: RSB Underflow
How do we guess indirect branches (func. pointers/returns)
2. returns: Return Stack Buffer (RSB) ⇒ a stack

call

RSB

call

call

call

call

call
???

Branch Prediction: RSB Underflow
How do we guess indirect branches (func. pointers/returns)
2. returns: Return Stack Buffer (RSB) ⇒ a stack

call

RSB

call

call

call

call

call

Branch Prediction: RSB Underflow
How do we guess indirect branches (func. pointers/returns)
2. returns: Return Stack Buffer (RSB) ⇒ a stack

call

RSB

call

call

call

call

call ret

Branch Prediction: RSB Underflow
How do we guess indirect branches (func. pointers/returns)
2. returns: Return Stack Buffer (RSB) ⇒ a stack

call

RSB

call

call

call

call

call ret

Branch Prediction: RSB Underflow
How do we guess indirect branches (func. pointers/returns)
2. returns: Return Stack Buffer (RSB) ⇒ a stack

call

RSB

call

call

call

call

call ret

Branch Prediction: RSB Underflow
How do we guess indirect branches (func. pointers/returns)
2. returns: Return Stack Buffer (RSB) ⇒ a stack

call

RSB

call

call

call

call

call ret

ret

Branch Prediction: RSB Underflow
How do we guess indirect branches (func. pointers/returns)
2. returns: Return Stack Buffer (RSB) ⇒ a stack

call

RSB

call

call

call

call

call ret

ret

ret

Branch Prediction: RSB Underflow
How do we guess indirect branches (func. pointers/returns)
2. returns: Return Stack Buffer (RSB) ⇒ a stack

call

RSB

call

call

call

call

call ret

ret

ret

ret

Branch Prediction: RSB Underflow
How do we guess indirect branches (func. pointers/returns)
2. returns: Return Stack Buffer (RSB) ⇒ a stack

call

RSB

call

call

call

call

call ret

ret

ret

ret

ret

Branch Prediction: RSB Underflow
How do we guess indirect branches (func. pointers/returns)
2. returns: Return Stack Buffer (RSB) ⇒ a stack

call

RSB

call

call

call

call

call ret

ret

ret

ret

ret

ret???

Branch Prediction: RSB Underflow
How do we guess indirect branches (func. pointers/returns)
2. returns: Return Stack Buffer (RSB) ⇒ a stack

call

RSB

call

call

call

call

call ret

ret

ret

ret

ret

ret

!!!

On some CPUs, we just use what we
find there...

Branch Prediction: RSB Underflow
How do we guess indirect branches (func. pointers/returns)
2. returns: Return Stack Buffer (RSB) ⇒ a stack

call

RSB

call

call

call

call

call ret

ret

ret

ret

ret

ret

BTB
[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

On some CPUs, data is pulled from BTB

Alternative Universes

● speculate = to guess, execution = to do something
speculative execution = do something based on a guess

● IRL:
○ You to a friend: <<hey, do you want a cup coffee?>>
○ While talking/waiting for answer: turn on machine, prep. cups, ...

● In CPUs:
○ Memory is slow. While waiting for data, do something
○ instruction reordering, superscalar pipelines, branch prediction, ...

if <A> is true
 do <x>

○ Modern CPUs speculate a lot! (~= 200 entries reorder buffers)

Kernel Recipes ‘18: Paolo Bonzini - “Meltdown and Spectre: seeing through the magician’s tricks”

NYLUG: Andrea Arcangeli, Jon Masters - “Speculation out of control, taming CPU bugs”

Speculative execution

do <x> | check
<A>

Speculative Execution:
do <x> , while waiting to be
able to check <A>

https://www.youtube.com/watch?v=JzlaJjZh3R0
https://www.youtube.com/watch?v=fdzusBfR6GQ&t=1515s

Speculative Execution:
Alternate Universes (*)

● I can create an alternate universe
● everything the same, I have superpowers:

– I can do whatever I want, I always succeeds
(it's my alternate universe! :-D)

● After, say, 30 seconds:
– alternate universe disappears
– in the original universe, I remember nothing :-(
– good things I've done ⇒ "copied" back to original universe
– bad things I've done ⇒ never happened in original universe

(*) Analogy stolen from George’s talk

https://youtu.be/36jta61XTw8

Speculative Execution:
Alternate Universes (*)

● I can create an alternate universe
● everything the same, I have superpowers:

– I can do whatever I want, I always succeeds
(it's my alternate universe! :-D)

● After, say, 30 seconds:
– alternate universe disappears
– in the original universe, I remember nothing
– good things I've done ⇒ "copied" back to original universe
– bad things I've done ⇒ never happened in original universe

(*) Analogy stolen from George’s talk

What if, alteration of the heat of
objects, happening in the alternate

universe, leaks to original universe?

https://youtu.be/36jta61XTw8

Speculative Execution:
Alternate Universes (*)

● I can create an alternate universe
● everything the same, I have superpowers:

– I can do whatever I want, I always succeeds
(it's my alternate universe!)

● After, say, 30 seconds:
– alternate universe disappears
– in the original universe, I remember nothing
– good things I've done ⇒ "copied" back to original universe
– bad things I've done ⇒ never happened in original universe

(*) Analogy stolen from George’s talk https://youtu.be/36jta61XTw8

https://youtu.be/36jta61XTw8

Speculative Execution:
Alternate Universes (*)

● I can create an alternate universe
● everything the same, I have superpowers:

– I can do whatever I want, I always succeeds
(it's my alternate universe!)

● After, say, 30 seconds:
– alternate universe disappears
– in the original universe, I remember nothing
– good things I've done ⇒ "copied" back to original universe
– bad things I've done ⇒ never happened in original universe

(*) Analogy stolen from George’s talk https://youtu.be/36jta61XTw8

Stop looking at
Facebook, BTW!

https://youtu.be/36jta61XTw8

Side Channels

Gaining information on a system by observing its behavior
• Read otherwise unaccessible memory via a buffer overflow
• Measuring microarchitectural properties
• ⇒ not interact with nor influence execution of a program
• ⇒ not let one modify/delete/... any data

Caches as side channels:
• Accessing memory is fast, if data is in cache
• Accessing memory is slow, if data is in cache
• ⇒ measuring data access time == cache side-channel

Side Channels (Covert Channels)

Execution time of instruction: depending on data being in caches

Example:
• I fill the cache (big array)
• Call target_func(int idx)

– I control value of idx
• target_func() bring its data in cache

t = a+b
u = t+c
v = u+d
if v:
 w = kern_mem[address] # if we get here, fault
 x = w&0x100
 y = user_mem[x]
Now, provided we can train the branch predictor to believe that v is
likely to be non-zero, our out-of-order two-way superscalar processor
shuffles the program like this:

t, w_ = a+b, kern_mem[address]
u, x_ = t+c, w_&0x100
v, y_ = u+d, user_mem[x_]

if v:
 # fault
 w, x, y = w_, x_, y_ # we never get here
Even though the processor always speculatively reads from the kernel
address, it must defer the resulting fault until it knows that v was
non-zero. On the face of it, this feels safe because either:

v is zero, so the result of the illegal read isn’t committed to w
v is non-zero, but the fault occurs before the read is committed to w
However, suppose we flush our cache before executing the code, and
arrange a, b, c, and d so that v is actually zero. Now, the speculative
read in the third cycle:

v, y_ = u+d, user_mem[x_]
will access either userland address 0x000 or address 0x100 depending
on the eighth bit of the result of the illegal read, loading that address
and its neighbours into the cache. Because v is zero, the results of the
speculative instructions will be discarded, and execution will continue.
If we time a subsequent access to one of those addresses, we can
determine which address is in the cache. Congratulations: you’ve just
read a single bit from the kernel’s address space!

The real Meltdown exploit is substantially more complex than this
(notably, to avoid having to mis-train the branch predictor, the authors
prefer to execute the illegal read unconditionally and handle the
resulting exception), but the principle is the same. Spectre uses a
similar approach to subvert software array bounds checks.

Gaining information on a system by observing its behavior
• Read otherwise unaccessible memory via a buffer overflow
• Measuring microarchitectural properties
• ⇒ not interact with nor influence execution of a program
• ⇒ not let one modify/delete/... any data

Caches as side channels:
• Accessing memory is fast, if data is in cache
• Accessing memory is slow, if data is in cache
• ⇒ measuring data access time == cache side-channel

Cache as a Side Channel

Cache

Prime and Probe

https://www.linaro.org/blog/meltdown-spectre/

Execution time of instruction: depending on data being in caches

Example:
• I fill the cache (big array)
• Call target_func(int idx)

– I control value of idx
• target_func() bring its data in cache
• I measure access time to all array elements
• The slowest one tells me something about

what target_func() has done
– (remember, I control, idx)

t = a+b
u = t+c
v = u+d
if v:
 w = kern_mem[address] # if we get here, fault
 x = w&0x100
 y = user_mem[x]
Now, provided we can train the branch predictor to believe that v is
likely to be non-zero, our out-of-order two-way superscalar processor
shuffles the program like this:

t, w_ = a+b, kern_mem[address]
u, x_ = t+c, w_&0x100
v, y_ = u+d, user_mem[x_]

if v:
 # fault
 w, x, y = w_, x_, y_ # we never get here
Even though the processor always speculatively reads from the kernel
address, it must defer the resulting fault until it knows that v was
non-zero. On the face of it, this feels safe because either:

v is zero, so the result of the illegal read isn’t committed to w
v is non-zero, but the fault occurs before the read is committed to w
However, suppose we flush our cache before executing the code, and
arrange a, b, c, and d so that v is actually zero. Now, the speculative
read in the third cycle:

v, y_ = u+d, user_mem[x_]
will access either userland address 0x000 or address 0x100 depending
on the eighth bit of the result of the illegal read, loading that address
and its neighbours into the cache. Because v is zero, the results of the
speculative instructions will be discarded, and execution will continue.
If we time a subsequent access to one of those addresses, we can
determine which address is in the cache. Congratulations: you’ve just
read a single bit from the kernel’s address space!

The real Meltdown exploit is substantially more complex than this
(notably, to avoid having to mis-train the branch predictor, the authors
prefer to execute the illegal read unconditionally and handle the
resulting exception), but the principle is the same. Spectre uses a
similar approach to subvert software array bounds checks.

Gaining information on a system by observing its behavior
• Read otherwise unaccessible memory via a buffer overflow
• Measuring microarchitectural properties
• ⇒ not interact with nor influence execution of a program
• ⇒ not let one modify/delete/... any data

Caches as side channels:
• Accessing memory is fast, if data is in cache
• Accessing memory is slow, if data is in cache
• ⇒ measuring data access time == cache side-channel

Cache as a Side Channel

Cache

Prime and Probe

https://www.linaro.org/blog/meltdown-spectre/

Execution time of instruction: depending on data being in caches

Example:
• I fill empty the cache (big array)
• Call target_func(int idx)

– I control value of idx
• target_func() bring its data in cache
• I measure access time to all array elements
• The slowest fastest one tells me something

About what target_func() has done
– (remember, I control, idx)

t = a+b
u = t+c
v = u+d
if v:
 w = kern_mem[address] # if we get here, fault
 x = w&0x100
 y = user_mem[x]
Now, provided we can train the branch predictor to believe that v is
likely to be non-zero, our out-of-order two-way superscalar processor
shuffles the program like this:

t, w_ = a+b, kern_mem[address]
u, x_ = t+c, w_&0x100
v, y_ = u+d, user_mem[x_]

if v:
 # fault
 w, x, y = w_, x_, y_ # we never get here
Even though the processor always speculatively reads from the kernel
address, it must defer the resulting fault until it knows that v was
non-zero. On the face of it, this feels safe because either:

v is zero, so the result of the illegal read isn’t committed to w
v is non-zero, but the fault occurs before the read is committed to w
However, suppose we flush our cache before executing the code, and
arrange a, b, c, and d so that v is actually zero. Now, the speculative
read in the third cycle:

v, y_ = u+d, user_mem[x_]
will access either userland address 0x000 or address 0x100 depending
on the eighth bit of the result of the illegal read, loading that address
and its neighbours into the cache. Because v is zero, the results of the
speculative instructions will be discarded, and execution will continue.
If we time a subsequent access to one of those addresses, we can
determine which address is in the cache. Congratulations: you’ve just
read a single bit from the kernel’s address space!

The real Meltdown exploit is substantially more complex than this
(notably, to avoid having to mis-train the branch predictor, the authors
prefer to execute the illegal read unconditionally and handle the
resulting exception), but the principle is the same. Spectre uses a
similar approach to subvert software array bounds checks.

Gaining information on a system by observing its behavior
• Read otherwise unaccessible memory via a buffer overflow
• Measuring microarchitectural properties
• ⇒ not interact with nor influence execution of a program
• ⇒ not let one modify/delete/... any data

Caches as side channels:
• Accessing memory is fast, if data is in cache
• Accessing memory is slow, if data is in cache
• ⇒ measuring data access time == cache side-channel

Cache as a Side Channel (The Other Way Round)

Cache

Flush and Reload

https://www.linaro.org/blog/meltdown-spectre/

Attacking Speculative Execution

Speculative Execution Attack

result_bit = 0; //goal: read the 5th bit of what's at an address

bit = 4; //that I normally wouldn't be able to read!

flush_cacheline(L);

if (fork_alt_univ()) { //returns 1 in alternate, 0 in original universe :-)

 if (*target_address & (1 << bit))
//in the alternate universe now

 load_cacheline(L);

}

if (is_cacheline_loaded(L))
 //”Back” in in original universe

 result_bit = 1;

do it in a loop, use a bitmask and shift (<<)

Remember alternate
universes...

Speculative Execution Attack

result_bit = 0; //goal: read the 5th bit of what's at an address

bit = 4; //that I normally wouldn't be able to read!

flush_cacheline(L);

if (fork_alt_univ()) { //returns 1 in alternate, 0 in original universe
:-)

 if (*target_address & (1 << bit))
//in the alternate universe now

 load_cacheline(L);

}

if (is_cacheline_loaded(L))
 //”Back” in in original universe

 result_bit = 1;

do it in a loop, use a bitmask and shift (<<)

The CPU is executing this “in
speculation” ==> no fault!

Cache used as a side-channel:
Extract information from behavior

E.g., our looking-at-Facebook
“heated” spoon, a stethoscope for
hearing locks’ clicks, ...

This is how we “trick” the CPU to
execute code “in speculation”
(e.g., “poison” branch prediction)

BTB Poisoning Attack

Conditional branch predictor:

0x001 for (<1000000 times>)
0x002 if (true)
0x003 do_bla()

 ...
 ...

1 = taken

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

Predictor
Predictor updated
1000000 times with
“branch taken”

Attacker:

BTB Poisoning Attack

Conditional branch predictor:

0x001 for (<1000000 times>)
0x002 if (true)
0x003 do_bla()

 ...
 ...

1 = taken

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

Predictor
Predictor updated
1000000 times with
“branch taken”
(poisoning)

Attacker:
0x001 ...
0x002 if (A)
0x003 do_A()

 ...
 ...

Target:

Will be predicted as “branch taken”

do_A() will speculatively executed!!

RSB Underflow “Attack”

RSB

Task A Task B

call

RSB Underflow “Attack”

RSB

Task A Task B

call

RSB Underflow “Attack”

RSB

Task A Task B

callContext Switch

RSB “Overflow Attack”

RSB

call

Task A Task B

call

RSB “Overflow Attack”

RSBcall

call

Task A Task B

call

RSB “Overflow Attack”

RSB

call

call

call

Task A Task B

call

RSB “Overflow Attack”

RSB

call

call

call

call

Task A Task B

call

RSB “Overflow Attack”

RSB

call

call

call

call

Task A Task B

call

Context Switch

RSB “Overflow Attack”

RSB

call

call

call

call

Task A Task B

call

Context Switch ret

RSB “Overflow Attack”

RSB

ret

call

call

call

call

Task A Task B

call

It’s blue…
Shouldn’t it
be red?!? :-O

RSB “Overflow Attack”

RSB

ret

call

call

call

call

Task A Task B

call

While B’s ret is being done,
CPU speculatively executes
A’s code (or, potentially, A’s
controlled code)!

It’s blue…
Shouldn’t it
be red?!? :-O

RSB “Underflow Attack”

RSB

Task A Task B

call

callContext Switch

RSB “Underflow Attack”

RSB

call

call

call

call

Task A Task B

call

call

RSB “Underflow Attack”

RSB

call

call

call

call

Task A Task B

call

call

ret

ret

ret

ret

RSB “Underflow Attack”

RSB

call

call

call

call

Task A Task B

call

call

ret

ret

ret

ret

Context Switch
ret

NB: RSB is empty

RSB “Underflow Attack”

RSB

call

call

call

call

Task A Task B

call

call

ret

ret

ret

ret

ret

underflow!

RSB “Underflow Attack”

RSB

call

call

call

call

Task A Task B

call

call

ret

ret

ret

ret

ret

BTB

On some CPUs (e.g.,
Intel >= SkyLake uarch), on
RSB underflow, we check BTB

underflow!

RSB “Underflow Attack”

RSB

call

call

call

call

Task A Task B

call

call

ret

ret

ret

ret

ret

BTB

On some CPUs (e.g.,
Intel >= SkyLake uarch), on
RSB underflow, we check BTB

underflow!

CPU speculates on
What’s in the BTB

RSB “Underflow Attack”

RSB

call

call

call

call

Task A Task B

call

call

ret

ret

ret

ret

ret

BTB

On some CPUs (e.g.,
Intel >= SkyLake uarch), on
RSB underflow, we check BTB

underflow!

CPU speculates on
What’s in the BTB

What if A poisoned the BTB?!?

Speculative Execution:
Fundamental Assumptions

● Spec. Execution ~= out-of-order execution + branch prediction
● Safe iff:

a. Rollback works: not retired (== executed speculatively, but rolled
back) instructions have no side effects and leave no trace

b. No messing with guesses: it is impossible to reliably tell whether or
not a particular block of code will be executed speculatively

Speculative Execution:
Fundamental Assumptions

● Spec. Execution ~= out-of-order execution + branch prediction
● Safe iff:

a. Rollback works: not retired (== executed speculatively, but rolled
back) instructions have no side effects and leave no trace
Architectural registers, flags, …, ok, no side effects.
Caches, TLBs, …, not ok, side effects!

b. No messing with guesses: it is impossible to reliably tell whether or
not a particular block of code will be executed speculatively

Speculative Execution:
Fundamental Assumptions

● Spec. Execution ~= out-of-order execution + branch prediction
● Safe iff:

a. Rollback works: not retired (== executed speculatively, but rolled
back) instructions have no side effects and leave no trace
Architectural registers, flags, …, ok, no side effects.
Caches, TLBs, …, not ok, side effects!

b. No messing with guesses: it is impossible to reliably tell whether or
not a particular block of code will be executed speculatively
Predictions based on history (branch having previously been
taken/!taken can be “poisoned”, and hence controlled

Threat Model / Attack Scenarios

Meltdown / Spectre / others: TL;DR

Data Exfiltration “only”:
• An unprivileged application can read (but not write) other’s memory,

irrelevant of the isolation technique (virtualization, container,
namespace…) or the OS (Linux, Windows, MacOS…)

• Does not provide privilege escalation per-se, although it can help

Is my credit card data at risk:
• Don’t know / don’t care
• We’ll talk about technical aspects

Security, isolation, ...

Kernel

Device Drivers

HWMemory CPUsI/O

Memory
Management Scheduler

Userspace

User App
User App

User App

Security, isolation, ...
Attack Scenarios:

- User App to Other
User App(s)
- User App to Kernel

== successfully attacked!
 (e.g., read data/steal secrets)

Kernel

Device Drivers

HWMemory CPUsI/O

Memory
Management Scheduler

Userspace

User App

User App
User App

Security, isolation ...
Attack Scenarios:

1. User App to Other User Apps(s)
– Damage contained within App(s) data
– Might be different apps of same user / different apps of different users
– User Apps must protect themselves

2. User App to Kernel
– Implies nr. 1
– Kernel must protect itself

(*) slightly different between Xen and KVM

Virtualization, security, isolation ...

Virtualization Platform

Host: Kernel / Hypervisor (*)

Device Drivers

Host
User
Apps

HWMemory CPUsI/O

Memory
Management Scheduler

Guest Kernel

Guest
User
Apps

Guest
User
Apps

Guest
User
Apps

VM3

Guest Kernel

Guest
User
Apps

Guest
User
Apps

Guest
User
Apps

VM4

Guest Kernel

Guest
User
Apps

Guest
User
Apps

Guest
User
Apps

VM1

Guest Kernel

Guest
User
Apps

Guest
User
Apps

Guest
User
Apps

VM2

Attack Scenarios:

Virtualization Platform

Virtualization, security, isolation ...

Host: Kernel / Hypervisor

Device Drivers

Host
User
Apps

HWMemory CPUsI/O

Memory
Management Scheduler

Guest Kernel

Guest
User
Apps

Guest
User
Apps

Guest
User
Apps

VM3

Guest Kernel

Guest
User
Apps

Guest
User
Apps

Guest
User
Apps

VM4

Guest Kernel

Guest
User
Apps

Guest
User
Apps

Guest
User
Apps

VM1

Guest Kernel

Guest
User
Apps

Guest
User
Apps

Guest
User
Apps

VM2

- Host User to
Other Host User(s)
- Guest User to
Other Guest User(s)
- Host User to
Host Kernel
- Guest User to
Guest Kernel
- Guest to
Other Guest(s)
- Guest User to
Hypervisor
- Guest Kernel to
Hypervisor

== successfully attacked!
 (e.g., read data/steal secrets)

Virtualization, security, isolation ...
Attack Scenarios:
1. Host User App to Other Host User Apps(s)
2. Guest User App to Other Guest User Apps(s)

– Damage contained within App(s) data inside a VM
– VM user must protect his/her apps

3. Host User to Host Kernel
4. Guest User to Guest Kernel

– Implies nr. 2
– Damage contained within VM/customer
– Guest kernel must protect itself (mitigations ~= Host User to Host Kernel case)

5. Guest to Other Guest(s) (*)
– VM 3 can steal secrets from VM 4
– Hypervisor must isolate VMs

6. Guest to Hypervisor (Bad! Bad! Bad! Bad!) (*)
– Damage: implies nr. 5 “on steroids”!
– Hypervisor must protect itself

(*) we don’t really care if “Guest User to …” or Guest Kernel to …” as one should never trust anything running in a
 VMs --whatever it is the VM kernel or userspace. Either one (or both!) may have been compromised, and become malicious!

Virtualization, security, isolation ...
Attack Scenarios:
1. Host User App to Other Host User Apps(s)
2. Guest User App to Other Guest User Apps(s)

– Damage contained within App(s) data inside a VM
– VM user must protect his/her apps

3. Host User to Host Kernel
4. Guest User to Guest Kernel

– Implies nr. 2
– Damage contained within VM/customer
– Guest kernel must protect itself (mitigations ~= Host User to Host Kernel case)

5. Guest to Other Guest(s) (*)
– VM 3 can steal secrets from VM 4
– Hypervisor must isolate VMs

6. Guest to Hypervisor (Bad! Bad! Bad! Bad!) (*)
– Damage: implies nr. 5 “on steroids”!
– Hypervisor must protect itself

(*) we don’t really care if “Guest User to …” or Guest Kernel to …” as one should never trust anything running in a
 VMs --whatever it is the VM kernel or userspace. Either one (or both!) may have been compromised, and become malicious!

● Most critical
● Most important, for someone working

on OSes & hypervisors
(that would be me ;-P)

● Most interesting (personal opinion)

… We’ll focus on these

Meltdown

Meltdown (“Spectre v3”)
Rouge Data Cache Load (CVE-2017-5754)
● Virtual Memory, paging, system/user (s/u) bit:

– Kernel: ring0, can access all memory pages
– User Apps: ring3, can’t access kernel’s (ring0) pages

● While in speculation:
– Everyone can access everything!

• Kernel can read kernel addresses
• Kernel can read user addresses
• User can read user addresses
• User can read kernel addresses…

● No leaky gadget needed in kernel/hypervisor.
Attacker can use her own in user code (much,much
worse than Spectre!)

● Affected CPUs: Intel, one ARM CPU, PPC (to some extent… only data in L1, …)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754
https://www.phoronix.com/scan.php?page=news_item&px=PowerPC-Mem-Protection-Keys
https://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux.git/commit/?h=next&id=aa8a5e0062ac940f7659394f4817c948dc8c0667

Meltdown

App A

Kernel

App B

App C

App A

Kernel

App A

Kernel

Host Physical
Memory

Virtual Memory
of App A running

in User Mode
(ring3)

Mapping

Mapping

Page Tables
(MMU)

Virtual Memory
of App A running
in Kernel Mode

(ring0)

Yes, virtual memory map is
identical for User App A, when
running in both user and kernel
mode! Why?

● User apps switch from user to
kernel mode: e.g., syscall,
interrupts, …

● Changing virtual memory map
come at high price: TLB flush

● Kernel is the same for
everyone, so, why bother?

Meltdown

App A

Kernel

App B

App C

App A

Kernel

App A

Kernel

Host Physical
Memory

Mapping

Mapping

Page Tables
(MMU)

Yes, virtual memory map is
identical for User App A, when
running in both user and kernel
mode! Why?

● User apps switch from user to
kernel mode: e.g., syscall,
interrupts, …

● Changing virtual memory map
come at high price: TLB flush

● Kernel is the same for
everyone, so, why bother?

(a)

Virtual Memory
of App A running

in User Mode
(ring3)

Virtual Memory
of App A running
in Kernel Mode

(ring0)

But… Can’t App A,
running in User
Mode, access

Kernel memory
then?

Meltdown

App A

Kernel

App B

App C

App A

Kernel

App A

Kernel

Host Physical
Memory

Mapping

Mapping

Page Tables
(MMU)

(a)

Can’t App A, running in User
Mode, access Kernel memory
then?
● Normally: s/u bit in page

tables:
– No, it can’t, when in

user mode
– Yes it can, when in

kernel mode
● Speculatively:

s/u bit in page tables
ignored
– Yes it can, all the time!

Virtual Memory
of App A running

in User Mode
(ring3)

Virtual Memory
of App A running
in Kernel Mode

(ring0)

Meltdown
User space code:

int w, x, xx, array[];

if (<false_but_predicted_as_true>) {

 w = *((int*)kernel_memory_address);

 x = array[(w & 0x001)];

}

t0 = rdtsc(); xx = array[0]; t0 = rdtsc() - t0

t1 = rdtsc(); xx = array[1]; t1 = rdtsc() - t1

if (t0 < t1)

 //access to array[0] faster → (* kernel_memory_address)&1 = 0

else

 //access to array[1] faster → (* kernel_memory_address)&1 = 1

Meltdown
User space code:

int w, x, xx, array[];

if (<false_but_predicted_as_true>) {

 w = *((int*)kernel_memory_address);

 x = array[(w & 0x001)];

}

t0 = rdtsc(); xx = array[0]; t0 = rdtsc() - t0

t1 = rdtsc(); xx = array[1]; t1 = rdtsc() - t1

if (t0 < t1)

 //access to array[0] faster → (* kernel_memory_address)&1 = 0

else

 //access to array[1] faster → (* kernel_memory_address)&1 = 1

Trigger speculation:
Make sure the branch is
predicted “taken”
(e.g., poison BHB)

Accessed in speculation:
● Privilege check bypassed
● No fault (instruction

doesn’t retire)

Leaky gadget:
● Load a secret
● Load something else,

offseted by that secret
Entirely under attacker’s control!

Meltdown: Impact
● Guest User to Guest Kernel (Guest User App to Guest User App(s)):

– KVM: yes (User to User goes via kernel mappings in User Apps)
– Xen HVM, PVH, PV-32bit[1]: yes (User to User goes via kernel mappings

in User Apps)
– Xen PV-64bit: no [2]

● Guest to Hypervisor (Guest to Other Guest(s)):
– KVM: no
– Xen HVM, PVH, PV-32bit: no
– Xen PV-64bit: yes :-(([2]

● Containers: affected :-((

● Rather easy to exploit !

[1] Address space is too small
[2] Looong story… ask offline ;-P

Meltdown: {K,X}PTI

KPTI / XPTI:
Kernel Page Table Isolation,
Xen Page Table Isolation:

● In speculation CPU can
access everything that
is mapped

App A

Kernel

App B

App C

App A App A

Kernel

Host Physical
Memory

Mapping

Mapping

Page Tables
(MMU)

(a)

Virtual Memory
of App A running

in User Mode
(ring3)

Virtual Memory
of App A running
in Kernel Mode

(ring0)

Kernel

Meltdown: {K,X}PTI

KPTI / XPTI:
Kernel Page Table Isolation,
Xen Page Table Isolation:

● In speculation CPU can
access everything that
is mapped

● Let’s *not* map
everything! … … … ...
… … and pay the price
for that! :-(

App A

Kernel

App B

App C

App A

Kernel (*)

App A

Kernel

Host Physical
Memory

Mapping

Mapping

Page Tables
(MMU)

(a)

Virtual Memory
of App A running

in User Mode
(ring3)

Virtual Memory
of App A running
in Kernel Mode

(ring0)

(*) Only “trampolines” for syscalls, IRQs, ...

Meltdown: {K,X}PTI

KPTI / XPTI:
Kernel Page Table Isolation,
Xen Page Table Isolation:

● In speculation CPU can
access everything that
is mapped

● Let’s *not* map
everything! … … … ...
… … and pay the price
for that! :-(

App A

Kernel

App B

App C

App A

Kernel (*)

App A

Kernel

Host Physical
Memory

Mapping

Mapping

Page Tables
(MMU)

(a)

Virtual Memory
of App A running

in User Mode
(ring3)

Virtual Memory
of App A running
in Kernel Mode

(ring0)

(*) Only “trampolines” for syscalls, IRQs, ...

BTW, this is also mapped
with NX=1 (if available)

● Not Executable ⇒
similar to SMEP

● Good! (e.g., for
Spectre)

Meltdown: PCID
● User Mode ⇒ Kernel Mode (and vice-versa)

– syscalls, IRQs, ...
– Change virtual memory layout (CR3 register)
– Flush all TLB (~ page tables cache). It really hurts performance

● PCID (Process-Context IDentifier):
– Tag TLB entries ⇒ flush all TLB flush selectively
– In Intel CPUs since 2010 !!! (PCID in Westmere, INVPCID in Haswell)

● Until now … … …
– complicate to use, and we map everything anyway,

why bother?
● Now (i.e., after Meltdown):

– Let’s bother!
– Used in both Xen and Linux

https://lists.xenproject.org/archives/html/xen-devel/2018-04/msg00654.html
https://kernelnewbies.org/Linux_4.14#Longer-lived_TLB_Entries_with_PCID

Meltdown: Mitigation
● KVM:

– Enable KPTI on host (protects host kernel from Host User Apps!)
– Enable KPTI inside guests

● Xen:
– Enable XPTI, to protect PV-64bit guests (including Dom0!)
– Enable KPTI inside HVM, PVH and PV-32bit guests

● Containers:
– Enable KPTI on host

Meltdown:
Performance Impact

Expected: from -5% to -30% performance impact
● Workload dependant: worse if I/O and syscall intensive
● Slowdowns of more than -20% reached only on synthetic benchmarks

(e.g., doing lots of tiny I/O)
● For “typical” workloads, we’re usually well within -10% ...
● … with PCID support!

– LKML posts: postgres -5%, haproxy -17%
– Brendan Gregg - KPTI/KAISER Meltdown Initial Performance Regressions
– Gil Tene - PCID is now a critical performance/security feature on x86

https://lkml.org/lkml/2017/11/22/956
https://lkml.org/lkml/2018/1/2/678
https://lkml.org/lkml/2018/1/3/281
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
https://groups.google.com/forum/#!topic/mechanical-sympathy/L9mHTbeQLNU

Spectre

Spectre v1
Bounds-Check Bypass (CVE-2017-5753)
● Attacks conditional branch prediction
● Vulnerable code (leaky gadget) must be present in target, or JIT (*)
● Affected CPUs: everyone (Intel, AMD, ARM)

uint8_t arr_size, arr[]; //array_size not in cache

Uint8_t arr_size, arr2[]; //elements 1 and 2 not in cache

//untrusted_index_from_attacker = <out of array[] boundaries>

if (untrusted_index_from_attacker < arr_size) {

 val = arr[untrusted_index_from_attacker];

 idx2 = (val&1) + 1;

 val2 = arr2[idx2]; //arr2[1] in cache ⇒ (arr[untrusted_index]&1) = 0

} //arr2[2] in cache ⇒ (arr[untrusted_index]&1) = 1
 (*) Just in Time code generators

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5753

Spectre v1
Bounds-Check Bypass (CVE-2017-5753)
● Attacks conditional branch prediction
● Vulnerable code (leaky gadget) must be present in target, or JIT (*)
● Affected CPUs: everyone (Intel, AMD, ARM)

uint8_t arr_size, arr[]; //array_size not in cache

Uint8_t arr_size, arr2[]; //elements 1 and 2 not in cache

//untrusted_index_from_attacker = <out of array[] boundaries>

if (untrusted_index_from_attacker < arr_size) {

 val = arr[untrusted_index_from_attacker];

 idx2 = (val&1) + 1;

 val2 = arr2[idx2]; //arr2[1] in cache ⇒ (arr[untrusted_index]&1) = 0

} //arr2[2] in cache ⇒ (arr[untrusted_index]&1) = 1
 (*) Just in Time code generators

Target == kernel/hypervisor
(Linux if KVM, Xen if Xen). Not really
common!

Leaky gadget:
● Load a secret
● Leak it, by loading something

else, offseted by that secret

Xen: no JIT,
KVM: eBPF

Trigger speculation:
Make sure the branch is
predicted “taken”
(e.g., poison BHB)

Spectre v1: Impact,
mitigations, performance
● Impact:

– Guest User App to Guest User App(s): yes (JIT, e.g., Javascript in
browsers)

– Guest User to Guest Kernel, Guest to Hypervisor, Containers:
well, theoretically (leaky gadgets or JIT in kernel/hypervisor)

● Extremely hard to exploit
● Mitigation:

– none… wait, what?
– Manual code sanitization

(a.k.a. playing the whack-a-mole game!)
– array_index_mask_nospec(), in Xen &

Linux, to stop speculation
● Performance Implications: none (clever

 Tricks to avoid “fencing” …)

Spectre v2
Branch Target Injection(CVE-2017-5715)
● Attacks indirect branch prediction: function pointers / jmp *(%r11)
● Attacker might be able to provide his own leaky gadget
● Affected CPUs: everyone (Intel, AMD, ARM)

Predictors of indirect branch targets:
● Are based on previous history (BTB); can be “poisoned”
● Branches done in userspace influence predictions in kernel space
● Branches done in SMT thread influence predictions on sibling

Attack:
● Same leaky gadget based strategy (PoC for KVM via eBPF)
● Attacker provided leaky gadget if !SMEP on the CPU (on x86)

Marc Zyngier - KVM/arm Meets the Villain: Mitigating Spectre
Very good talk about ARM specifics challenges

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5715
https://www.youtube.com/watch?v=Mc_kwXJz-cQ

Spectre v2
Indirect jump:

Address Instruction

0x001123 jmp *(%r11) //r11 = 0xddeeff

... ...

... ...

0xaabbcc <my leaky gadget> //either target’s or

... ... //attacker’s code

... ...

0xddeeff <xxx>

<yyy>

Regular Execution:
● We are at (1)
● We jump at (2)

(1)

(2)

Indirect branch:
● Function

pointer
● Which

function is
pointed is
predicted

Spectre v2
Indirect jump:

Address Instruction

0x001123 jmp *(%r11) //r11 = 0xddeeff

... ...

... ...

0xaabbcc <my leaky gadget> //either target’s or

... ... //attacker’s code

... ...

0xddeeff <xxx>

<yyy>

Regular Execution:
● We are at (1)
● We jump at (2)

(1)

(2)

Speculative Execution (Attack):
● We poison BTB to think that

r11 = aabbcc
● We are at (1)
● We enter speculation at (1s),

where’s the leaky gadget

(1)

(1s)

0xaabbcc

Guest User App “produce” Poison ⇒ BTB in the CPU

Spectre v2 (& v1 !):
Branch Predictor Poisoning

Guest Kernel

Guest User App

VM

Host User App

Host Kernel /
Hypervisor

POISON!!

Guest Kernel

Guest User App

VM

Host User App

Host Kernel /
Hypervisor

POISON!!

POISON!!

POISON!!

POISON!!

Poison “percolates”;
all entities at higher
privilege levels are
(potentially) affected
!!

Lowest
privilege

Highest
privilege

Guest Kernel

Guest User
App

VM

Host User App

Host Kernel / Hypervisor

POISON!!

Guest User
App

POISON!!Poison “spreads”;
all entities at the
same privilege
level are
(potentially)
affected !!

Spectre v2: Impact

● Guest User to Guest Kernel, (Guest User App to Guest User App(s)):
yes (JIT, e.g., Javascript in browsers)

● Guest to Other Guest(s): yes (via Guest to Hypervisor)
● Guest to Hypervisor: yes (existing leaky gadget if SMEP,

or via JIT)
● Containers: affected

● Reasonably hard to exploit, exp. for vitrtualization

SMEP: Supervisor Mode Exec. Protection (Fischer, Stephen (2011-09-21))

– Kernel won’t execute User App code
– We can’t make kernel speculatively jump to a User App provided leaky gadget

https://web.archive.org/web/20160803075007/https://www.ncsi.com/nsatc11/presentations/wednesday/emerging_technologies/fischer.pdf

Spectre v2: retpoline
Let’s set up a trap for speculation:

jmp *%r11

Replacement can happen:
● kernel/hypervisor & userspace: compiler support

(<<yay, let’s recompile everything!>> :-/)
● kernel/hypervisor: binary patching (e.g., Linux’s alternatives)

 call set_up_target;

capture_spec:

 pause; lfence;

 jmp capture_spec;

set_up_target:

 mov %r11, (%rsp);

 ret;

… by Google

https://lwn.net/Articles/164121/
https://support.google.com/faqs/answer/7625886

Let’s set up a trap for speculation:

jmp *%r11

• Skylake+: ret target might be predicted with BTB lwn.net/Articles/745111/
• “RSB Stuffing” Retpoline: A Branch Target Injection Mitigation

 call set_up_target;

capture_spec:

 pause; lfence;

 jmp capture_spec;

set_up_target:

 mov %r11, (%rsp);

 ret;

Key point: call/ret have their own
predictor (RSB) different than indirect
jmp one (BTB)

(1) we jmp to known label/address: no
prediction or speculation (with call)

(2) we what the last call (at (1)) put on
the stack for the next ret with *(%r11)

(3) ret sends us to *(%r11) ; predicted target,
via RSB, is below last call (i.e.,
capture_spec)

(4) while code executes at *(%r11) ,
speculation is trapped in infinite loop!

Spectre v2: retpoline

Key point:
call/ret have
their own
predictor (RSB)
different than
indirect jmp one
(BTB)

… by Google

https://lwn.net/Articles/745111/
https://software.intel.com/security-software-guidance/api-app/sites/default/files/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://support.google.com/faqs/answer/7625886

Spectre v2:
IBPB, STIBP, IBRS
Firmware/Microcode update (e.g., from Intel).
Gross hacks… ahem.. New “instructions”:
● IBPB: flush all branch info learned so far
● STIBP: ignore info of branches done on sibling hyperthread
● IBRS: ignore info of branches done in a less-privileged mode

(before it was most recently set)
Intended usage:
● IBPB: on context and/or vCPU switch. Prevents App/VM A influencing

(poisoning?) branch predictions of App/VM B
● STIBP: when running with HT. Prevents App/VM running on thread

influencing (poisoning?) branch predictions of App/VM on sibling
● IBRS: when entering kernel/hypervisor. Prevents Apps/VMs influencing

(poisoning?) branch predictions in kernel/hypervisor

Spectre v2: IBPB, STIBP, IBRS

Guest Kernel

Guest User
App

VM

Host User App

Host Kernel / Hypervisor

POISON!!

Guest User
App

POISON!!

I
B
P
B

Guest Kernel

Guest User App

VM

Host User App

Host Kernel /
Hypervisor

POISON!!

POISON!!

IBRS

POISON!!

POISON!!

IBRS

IBPB neutralizes
BTB poison
“horizontally”

(e.g., between
 processes)

IBRS neutralizes BTB
poison “vertically”

(e.g., between
 priv. levels)

Spectre v2: Mitigation(s)
● User Apps:

– retpoline
– Make timer less precise ⇒ harder to measure side effects!
– IBPB & STIBP (Spectre v2 app2app, in these days)

● Xen: tries to pick best combo at boot
– retpoline, when safe. IBRS, when reptoline-unsafe
– IBPB at VM switch
– Clear RSB on VM switch

● KVM:
– reptoline + some IBRS (e.g., when calling into firmware)
– IBPB at VM switch (heuristics for IBPB at context switch)
– Clear RSB on context/VM switch

● Both Xen, KVM: IBRS, IBPB, STIBP available/virtualized for VMs too

https://www.phoronix.com/scan.php?page=news_item&px=Linux-Spectre-V2-Userspace

Spectre v2:
Performance Impact
It’s complicated!
● retpoline: good performance… is it enough paranoia protection?
● IB* barriers:

– IBPB: moderate impact
– IBRS: impact varies a lot, depending on hardware
– STIBP: (these days) huge impact ⇒ making it per-app opt-in

E.g. Intel:
• pre-Skylake: super-bad
• post-Skylake: not-too-bad

– ⇒ it’s not only the flushing
• x86 : these are, for now, MSR write (sloooow!)
• ARM: on one CPU, disable/re-enable the MMU! :-O

Spectre (Again!)

Spectre v3a (Spectre-NG)
Rogue System Register Read (CVE-2018-3640)
● Speculative reads of system registers may leak info about system status

(e.g., flags)

http://cve-2018-3640

Spectre v4 (Spectre-NG)
Speculative Store Bypass (SSB) (CVE-2018-3639)
● Affected CPUs: everyone (Intel, AMD, ARM)
● in speculation, a load from an address can observe the result of a store

which is not the latest store to that address:
– STO 1 → R1

STO 2 → R1
(in speculation) LOAD R1 ⇒ sees 1 !!!

– E.g.:
user: syscall() ← pass data
Kernel: copy data on stack
… … … …
Kernel: store data on stack
Kernel: load data from stack ⇒ sees previous user provided data !!!

● Similar to Spectre v1: needs leaky gadget or JIT
● New instruction SSDB ⇒ no use Xen/KVM, useful for User Apps in guests

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3639

LazyFP (Spectre v5)
Lazy FPU State Leak (CVE-2018-3665)
● Affected CPUs: Intel
● FPU context is large

– let’s ignore it at context switches
– Mark it as invalid
– If new context (process/VM) needs it: save it, switch it

and mark as valid again
● Speculative execution:

– New context needs it ⇒ uses it right away, in speculation, with old
context’s values in it!

– “old context’s values”: how about keys or crypto stuff?!?!
● XSAVEOPT ...

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3665

L1TF (Foreshadow / ForeshadowNG)

L1TF - Baremetal (Foreshadow)
L1TF / Foreshadow (CVE-2018-3620)
● Similar to Meltdown, potentially
● Meltdown: user space can read kernel pages,

if they’re mapped in its address space
– s/u bit in page table entries, ignored, in speculation
– User space manages to maliciously read (in speculation)

all its virtual addresses
● L1TF: user space can kind of read physical memory directly!

– present bit in page table entries ignored, in speculation
– That means it can maliciously read (in speculation) all RAM ⇒ PTI is

useless
● Affects only Intel (~= Meltdown)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3620

HW

L1TF - Baremetal
Regular execution
App accesses data in
present page:
1. Page tables
2. Check L1 cache

3. Hit! Load data in

CPU

4. Miss! Fetch from
L2/L3/RAM

5. Load in L3, L2, L1
6. Load in CPU

Kernel

Device Drivers

CPUs

I/O

Memory
Management

Scheduler

User App A

Virtual Address

Physical Addr.

L1 Cache

L2 Cache

L2 Cache

Memory

page present: Y

HW

L1TF - Baremetal
Regular execution
App accesses data in
present page:
1. Page tables

page !present
2. Page fault

Kernel

Device Drivers

CPUs

I/O

Memory
Management

Scheduler

User App A

Virtual Address

Physical Addr.

L1 Cache

L2 Cache

L2 Cache

Memory

page present: N

FAULT!

* Swap page in
* SEGFAULT
* ...

Potentially Malicious
App A: stopped!

HW

L1TF - Baremetal
Speculative execution
App accesses data in
present page:
1. Page tables

page !present
2. Page fault
2. Check L1 cache

3. Hit! Load data in

CPU

Kernel

Device Drivers

CPUs

I/O

Memory
Management

Scheduler

User App A

Virtual Address

Physical Addr.

L1 Cache

L2 Cache

L2 Cache

Memory

NB!!!

HW

L1TF - Baremetal
Speculative execution
App accesses data in
present page:
1. Page tables

page !present
2. Page fault
2. Check L1 cache

3. Hit! Load data in

CPU

Wait… What?!?!

Kernel

Device Drivers

CPUs

I/O

Memory
Management

Scheduler

User App A

Virtual Address

Physical Addr.

L1 Cache

L2 Cache

L2 Cache

Memory

NB!!!

HW

L1TF - Baremetal
Speculative execution
App accesses data in
present page:
1. Page tables

page !present
2. Page fault
2. Check L1 cache

3. Hit! Load data in

CPU

Wait… What?!?!

Kernel

Device Drivers

CPUs

I/O

Memory
Management

Scheduler

User App A

Virtual Address

Physical Addr.

L1 Cache

L2 Cache

L2 Cache

Memory

NB!!!

Potentially malicious App A,
managed to speculatively
read whatever data is present
in L1 cache: can be other
app’s or kernel’s data!

HW

L1TF - Baremetal
Speculative execution
App accesses data in
present page:
1. Page tables

page !present
2. Page fault
2. Check L1 cache

3. Hit! Load data in

CPU

Wait… What?!?!

Kernel

Device Drivers

CPUs

I/O

Memory
Management

Scheduler

User App A

Virtual Address

Physical Addr.

L1 Cache

L2 Cache

L2 Cache

Memory

NB!!!

Potentially malicious App A,
managed to speculatively
read whatever data is present
in L1 cache: can be other
app’s or kernel’s data!

Use already described techniques (i.e.,
using cache as a side-channel, as in
Meltdown) to actually read it, out of
speculation: VM can read arbitrary host
data!!

L1TF - Baremetal (Foreshadow)
Problems:

• What does the !present page table entry (PTE) contains?
– Can be anything. Intel manual explicitly say the content will be

ignored
– OS is free to use it at will
– Linux, Windows, etc.: offset of the page in swap space

• Can an attacker process control its own (!present) PTEs?
– The kernel is in charge of PTEs, … … ...
– … … … yeah, but, e.g., mprotect() (Linux syscall)
– So, yes, it’s possible!

http://man7.org/linux/man-pages/man2/mprotect.2.html

L1TF - Virtualization (Foreshadow-NG)
L1TF / Foreshadow-NG (CVE-2018-3646)
● Like Meltdown. But scarier. And almost harder to fix (for virt)!
● Meltdown: user space can read kernel pages,

if they’re mapped in its address space
– s/u bit in page table entries, ignored, in speculation
– User space manages to maliciously read (in speculation)

all its virtual addresses
● L1TF: guests can kind of read physical memory directly!

– present bit in page table entries ignored, in speculation
– Guest manages to maliciously read (in speculation)

all RAM ⇒ PTI is useless
– … … … and, believe me, it gets worse !!!

● Affects only Intel (~= Meltdown)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-CVE-2018-3646

HW

L1TF - Virtualization
Regular execution
App accesses data in
present page:
1. Guest page tables
2. Host page tables
3. Check L1 cache

4. Hit! Load data in

CPU

4. Miss! Fetch from
L2/L3/RAM

5. Load in L3, L2, L1
6. Load in CPU

Host: Kernel /
 Hypervisor

Device Drivers

CPUs

I/O

Memory
Management

Scheduler

Guest Kernel

Guest User App A

VM 1

Guest Virt. Addr.

Guest Phys. Addr.

Host Phys. Addr.

L1 Cache

L2 Cache

L2 Cache

Memory

page present: Y

HW

L1TF - Virtualization
Regular execution
App accesses data in
non present page:
1. Guest page tables

page !present
2. Guest page fault

Host: Kernel /
 Hypervisor

Device Drivers

CPUs

I/O

Memory
Management

Scheduler

Guest Kernel

Guest User App A

VM 1

Guest Virt. Addr.

Invalid for AppA L1 Cache

L2 Cache

L2 Cache

Memory

FAULT!

Potentially Malicious
App A (e.g., trying to
steal data within
VM 1): stopped!page present: N

* Swap page in
* SEGFAULT
* ...

HW

L1TF - Virtualization
Regular execution
Guest accesses data in
non present page:
1. Guest page tables
2. Host page tables

page !present
3. Host page fault

Host: Kernel /
 Hypervisor

Device Drivers

CPUs

I/O

Memory
Management

Scheduler

Guest Kernel

Guest User App A

VM 1

Guest Virt. Addr.

Guest Phys. Addr.

Invalid for VM 1

L1 Cache

L2 Cache

L2 Cache

Memory

FAULT!

Potentially malicious
App A, or VM 1
(or both), trying to
steal from host or
other VMs: stopped!

* Swap page in
* kill VM
* ...

HW

L1TF - Virtualization
Speculative execution
App (speculatively)
accesses data in non
present page:
1. Guest page tables

page !present
2. Host page tables
2. Check L1 cache

3. Hit! Load data in

CPU

Host: Kernel /
 Hypervisor

Device Drivers

CPUs

I/O

Memory
Management

Scheduler

Guest Kernel

Guest User App A

VM 1

Guest Virt. Addr.

Invalid for AppA L1 Cache

L2 Cache

L2 Cache

Memory

NB!!!

HW

L1TF - Virtualization
Speculative execution
App (speculatively)
accesses data in non
present page:
1. Guest page tables

page !present
2. Host page tables
2. Check L1 cache

3. Hit! Load data in

CPU

Wait… What?!?!

Host: Kernel /
 Hypervisor

Device Drivers

CPUs

I/O

Memory
Management

Scheduler

Guest Kernel

Guest User App A

VM 1

Guest Virt. Addr.

Invalid for AppA L1 Cache

L2 Cache

L2 Cache

Memory

NB!!!

HW

L1TF - Virtualization
Speculative execution
App (speculatively)
accesses data in non
present page:
1. Guest page tables

page !present
2. Host page tables
2. Check L1 cache

3. Hit! Load data in

CPU

Wait… What?!?!

Host: Kernel /
 Hypervisor

Device Drivers

CPUs

I/O

Memory
Management

Scheduler

Guest Kernel

Guest User App A

VM 1

Guest Virt. Addr.

Invalid for AppA L1 Cache

L2 Cache

L2 Cache

Memory

NB!!!

Potentially malicious App A,
or VM (or both), managed
to speculatively read
whatever data is present in
L1 cache: can be host’s or
other VMs’ secrets!

HW

L1TF - Virtualization
Speculative execution
App (speculatively)
accesses data in non
present page:
1. Guest page tables

page !present
2. Host page tables
2. Check L1 cache

3. Hit! Load data in

CPU

Wait… What?!?!

Host: Kernel /
 Hypervisor

Device Drivers

CPUs

I/O

Memory
Management

Scheduler

Guest Kernel

Guest User App A

VM 1

Guest Virt. Addr.

Invalid for AppA L1 Cache

L2 Cache

L2 Cache

Memory

NB!!!

Potentially malicious App A,
or VM (or both), managed
to speculatively read
whatever data is present in
L1 cache: can be host’s or
other VMs’ secrets!

Use already described techniques (i.e., using
cache as a side-channel, as in Meltdown) to
actually read it, out of speculation: VM can
read arbitrary host data!!

HW

L1TF - Virtualization
Speculative execution
App (speculatively)
accesses data in non
present page:
1. Guest page tables

page !present
2. Host page tables
2. Check L1 cache

3. Hit! Load data in

CPU

Wait… What?!?!

Host: Kernel /
 Hypervisor

Device Drivers

CPUs

I/O

Memory
Management

Scheduler

Guest Kernel

Guest User App A

VM 1

Guest Virt. Addr.

Invalid for AppA L1 Cache

L2 Cache

L2 Cache

Memory

NB!!!

Potentially malicious App A,
or VM (or both), managed
to speculatively read
whatever data is present in
L1 cache: can be host’s or
other VMs’ secrets!

Use already described techniques (i.e., using
cache as a side-channel, as in Meltdown) to
actually read it, out of speculation: VM can
read arbitrary host data!!

Is this really dangerous?
● Attacker must control VMs’

kernel ⇒ generate malicious guest
addresses

● (doable from userspace, but really
difficult)

● Sensitive data must be in host’s L1
cache; L1 cache is small; turnaround
is quick; ...

HW

L1TF - Virtualization
Speculative execution
App (speculatively)
accesses data in non
present page:
1. Guest page tables

page !present
2. Host page tables
2. Check L1 cache

3. Hit! Load data in

CPU

Wait… What?!?!

Host: Kernel /
 Hypervisor

Device Drivers

CPUs

I/O

Memory
Management

Scheduler

Guest Kernel

Guest User App A

VM 1

Guest Virt. Addr.

Invalid for AppA L1 Cache

L2 Cache

L2 Cache

Memory

NB!!!

Potentially malicious App A,
or VM (or both), managed
to speculatively read
whatever data is present in
L1 cache: can be host’s or
other VMs’ secrets!

Use already described techniques (i.e., using
cache as a side-channel, as in Meltdown) to
actually read it, out of speculation: VM can
read arbitrary host data!!

Is this really dangerous?
● Attacker must control VMs’

kernel ⇒ generate malicious guest
addresses

● (doable from userspace, but really
difficult)

● Sensitive data must be in host’s L1
cache; L1 cache is small; turnaround
is quick; ...

HyperTrheading (HT)
(Intel impl. of Simmetric Multi-Threading)
to the rescue… of the attacker!!!
● SMT Siblings share L1D cache

L1TF: HyperThreading
Without Hyperthreading:

With Hyperthreading:

L1 Cache

VM 1

1. VM 1 runs on CPU
2. VM 1 puts secrets in L1 cache
3. VM 1 leaves CPU
4. VM 2 runs on CPU
5. VM 2 reads VM 1’s secrets!

VM 2
(1)

(2)

(3)

(4)

(5 -
L1TF)

L1 Cache

VM 1 VM 2(1) (3)
(2)

(4 -
L1TF)

1. VM 1 runs on Thread A
2. VM 2 runs on Thread B
3. VM 1 puts secrets in L1 cache
4. VM 2 reads VM 1’s secret from

L1 cache

Context Switch

No context switch
needed...

Guest (Kernel) to Other Guest(s) attack

L1TF: HyperThreading
Without Hyperthreading: mitigation

With Hyperthreading: err… mitigation?

L1 Cache

VM 1

1. VM 1 runs on CPU
2. VM 1 puts secrets in L1 cache
3. VM 1 leaves CPU
4. Hypervisor: flush L1 cache
5. VM 2 runs on CPU
6. VM 2 reads VM 1’s secrets!

VM 2
(1)

(2)

(3)

(5)

L1 Cache

VM 1 VM 2(1) (3)
(2)

(4 -
L1TF)

1. VM 1 runs on Thread A
2. VM 2 runs on Thread B
3. VM 1 puts secrets in L1 cache

Hypervisor: THERE’S NOTHING
I CAN DO !!!

4. VM 2 reads VM 1’s secret from
L1 cache

Co
nt

ex
t S

w
itc

h

(4)

Guest (kernel) to Other Guest(s) attack

L1TF: hyperthreading
Without Hyperthreading:

With Hyperthreading:

L1 Cache

1. Hypervisor runs on CPU
2. Hypervisor puts secrets in L1
3. Hypervisor leaves CPU
4. VM 2 runs on CPU
5. VM 2 reads hypervisor’s

secrets!

VM 2
(1)

(2)

(3)

(4)

(5 -
L1TF)

L1 Cache

VM 2(1) (3)
(2)

(4 -
L1TF)

1. Hypervisor runs on Thread A
2. VM 2 runs on Thread B
3. Hypervisor puts secrets in L1
4. VM 2 reads VM 1’s secret from

L1 cache

VMEntry

hyper-
visor

hyper-
visor

Guest Kernel to Other Guest(s) attack

No VMEntry
needed...

L1TF: hyperthreading
Without Hyperthreading: mitigation

With Hyperthreading: err… mitigation?

L1 Cache

hyper-
visor

1. Hypervisor runs on CPU
2. Hypervisor puts secrets in L1
3. Hypervisor leaves CPU
4. Hypervisor: flush L1 cache
5. VM 2 runs on CPU
6. VM 2 reads hypervisor’s secrets!

VM 2
(1)

(2)

(3)

(5)

L1 Cache

hyper-
visor

VM 2(1) (3)
(2)

(4 -
L1TF)

1. Hypervisor runs on Thread A
2. VM 2 runs on Thread B
3. Hypervisor puts secrets in L1

Hypervisor: THERE’S NOTHING
I CAN DO !!!

4. VM 2 reads Hypervisor’s
secret from L1 cache

VM
En

tr
y

(4)

Guest kernel to Other Guest(s) attack

L1TF: Impact
● Host User to Host Kernel (Host User to Other Host User(s),

Containers):
– yes (but easy to mitigate, zero perf. cost)

● Guest Kernel to Hypervisor (Guest to Other Guest(s)):
– Xen PV: yes (but easy to mitigate, ~= zero perf. cost)
– Xen HVM, PVH: yes
– KVM: yes

● Not that hard to exploit !

L1TF: Mitigation
● Host, Containers:

– Flip address bits in page tables when present bit is 0
– Resulting address will never be in L1 cache

• Unless you have terabytes of swap space
• ⇒ swap size limited on vulnerable CPUs

(x86/speculation/l1tf: Limit swap file size to MAX_PA/2)
● Xen PV:

– Xen intercepts PV guets’ page table updates: sanitize/crash malicious
guests

● Xen HVM, Xen PVH, KVM:
– Flush L1 cache on VMEntry
– Disable hyperthreading
– If not wanting to disable hyperthreading… disable hyperthreading!
– … … … Did I say disable hyperthreading?

http://x86/speculation/l1tf:%20Limit%20swap%20file%20size%20to%20MAX_PA/2

L1TF: Performance Impact
● Host, Containers, Xen PV:

– Negligible
● Xen HVM, Xen PVH, KVM:

– L1 cache: limited (so small and so fast!)
– Disable hyperthreading: depends

• Varies with workloads: realistically, -15% in some of the common cases.
Not more than -20%, or -30%, in most

• -50% claimed, but only seen in specific microbenchmarks

L1TF: Performance Impact
● Alternative ideas? (to disabling HT)

– Shadow Page Tables: we’d detect attacks ⇒ slow
– Core-scheduling: only vCPUs of same VM on SMT-siblings

• In the works, for both Xen and Linux: complex
• ok for Guest to Other Guests, not ok for Guest to Hypervisor

– Core-scheduling + “Coordinated VMExits”: complex
– Secret hiding:

• Hyper-V ~done
• Xen maybe doable
• KVM really hard

– Shadow Page Table, make it fast by “abusing” Intel CPU feats:
• CR3-whitelisting, PML (was for live-migration), ...
• ⇒ in the works brains…

KVM Forum '18: Alexander Graf - L1TF and KVM (has a demo!!! :-D)

https://www.youtube.com/watch?v=sssAEPxMKOI

Your Current Protection Status +
 Tunables

Your Current Situation
On a Linux host/guest. PTI, IBRS, IBPB, STIBP:

$ grep -E 'pti|ibrs|ibpb|stibp' -m1 /proc/cpuinfo
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36
clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc
art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni
pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca
sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm
3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single pti intel_ppin ssbd mba ibrs
ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2
smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb
intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc
cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req
flush_l1d

Your Current Situation
On a Linux host/guest. PTI, IBRS, IBPB, STIBP:

$ grep -E 'pcid' -m1 /proc/cpuinfo
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36
clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc
art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni
pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca
sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm
3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single pti intel_ppin ssbd mba ibrs
ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2
smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb
intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc
cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req
flush_l1d

Your Current Situation
On a Linux host/guest:

$ ls /sys/devices/system/cpu/vulnerabilities/

l1tf meltdown spec_store_bypass spectre_v1 spectre_v2

$ grep -H . /sys/devices/system/cpu/vulnerabilities/*
/sys/devices/system/cpu/vulnerabilities/l1tf:

Mitigation: PTE Inversion; VMX: conditional cache flushes, SMT vulnerable
/sys/devices/system/cpu/vulnerabilities/meltdown:

Mitigation: PTI
/sys/devices/system/cpu/vulnerabilities/spec_store_bypass:

Mitigation: Speculative Store Bypass disabled via prctl and seccomp
/sys/devices/system/cpu/vulnerabilities/spectre_v1:

Mitigation: __user pointer sanitization
/sys/devices/system/cpu/vulnerabilities/spectre_v2:

Mitigation: Indirect Branch Restricted Speculation, IBPB: conditional, IBRS_FW,
 STIBP: conditional, RSB filling

Your Current Situation TODO
On a Xen host:

$ ls /sys/devices/system/cpu/vulnerabilities/

l1tf meltdown spec_store_bypass spectre_v1 spectre_v2

$ grep -H . /sys/devices/system/cpu/vulnerabilities/*
/sys/devices/system/cpu/vulnerabilities/l1tf:

Mitigation: PTE Inversion; VMX: conditional cache flushes, SMT vulnerable
/sys/devices/system/cpu/vulnerabilities/meltdown:

Mitigation: PTI
/sys/devices/system/cpu/vulnerabilities/spec_store_bypass:

Mitigation: Speculative Store Bypass disabled via prctl and seccomp
/sys/devices/system/cpu/vulnerabilities/spectre_v1:

Mitigation: __user pointer sanitization
/sys/devices/system/cpu/vulnerabilities/spectre_v2:

Mitigation: Indirect Branch Restricted Speculation, IBPB: conditional, IBRS_FW,
 STIBP: conditional, RSB filling

Tunables
<<Greetings, how slow do you want to go today?>>
<<Greetings, how secure do you want to be today?>>
● KVM:

– pti = on|off| auto
– spectre_v2 = on|off|auto|retpoline,generic| retpoline,amd
– spec_store_bypass_disable = on|off|auto|prctl|seccomp
– l1tf = full|flush|flush,nosmt
– kvm-intel.vmentry_l1d_flush = always|cond|never

● XEN:
– xpti = [dom0 = TRUE/FALSE , domu = TRUE/FALSE]
– bti-thunk = retpoline|lfence|jmp
– {ibrs,ibpb,ssbd,eager-fpu,l1d-flush} = TRUE/FALSE
– {smt,pv-l1tf} = TRUE/FALSE

https://make-linux-fast-again.com

https://make-linux-fast-again.com/

Conclusions
● “Hardware bugs” are difficult

– Not only to fix mitigate
– But also to work on, collaboratively (NDAs, etc)
– Getting better

● Issues like these will really hunt us for a few time…
● Speculative Execution has shaped Computing World
● We focused on performance first, now we deal with consequences.

As grandma used to say: <<L’hai voluta la bicicletta, oh pedala!!!>>
● Do update your firmware/microcode; do update your kernel
● Threats are real but don’t panic: analyze your system, assess risks
● Performance impact may be really high but don’t panic: benchmark

your own workload, look for tunables

Some Examples / Anecdotes / Curiosities

NoTimers, NoFlush? Still party!
Cache as a side channel:

• Some control cache content (flush, place own array)
• Accurately time array elements accesses

So… Is forbidding user-space code to flush cache a mitigation?
• No! User code can still cause cache flushes, via memory allocation
• No! User code can “displace” array elements

So… Is reducing timers’ resolution for user-space code a mitigation?
• No! If I have shared memory (& multi-core/multi-thread) I can setup

a counter thread == a timer
• (Actually done, e.g., in Android and in some browsers…)

“Microcode” What ?
Hardware bugs (yes, we’ve had those before!)

• Cyrix Coma, Pentium FDIV or Pentium F00F)
• ⇒ Hardware replacement!

We don’t want that:
• CPUs executes “micro-operations” (µops), not real x86 opcodes
• Translation between opcodes and µops: microcode, inside CPUs
• Can be changed/updated (distributed only in binary form)
• Change CPU behavior “in the field”
• Well, up to a certain extent!
• (NB updates are not persistent, reload at boot)

https://en.wikipedia.org/wiki/Cyrix_coma_bug
https://en.wikipedia.org/wiki/Pentium_FDIV_bug
https://en.wikipedia.org/wiki/Pentium_F00F_bug

Chicken bits

“Chicken bits”
- A control bit stored in a register, used in ASICs and other integrated

circuits to disable or enable features within a chip.
https://www.urbandictionary.com/define.php?term=Chicken%20Bit

- (electronics) A bit on a chip that can be used to disable one of the
features of the chip if it proves faulty or negatively impacts performance.
https://en.wiktionary.org/wiki/chicken_bit

2010, Ilya Wagner & Valeria Bertacco, Post-Silicon and Runtime Verification for
Modern Processors, Springer, page 165: <<As an example, modules such as
branch predictors and speculative execution units can be turned off with a
variant of the “chicken bits”, control bits common to many design
developments to control the activation of specific features.>>

https://www.urbandictionary.com/define.php?term=Chicken%20Bit
https://en.wiktionary.org/wiki/chicken_bit
https://www.springer.com/gp/book/9781441980335

call *%rax

 jmp label2
Label0:
 call label1
capture_ret_spec:
 pause ; lfence
 jmp capture_ret_spec
Label1:
 mov %rax, (%rsp)
 ret
Label2:
 call label0
… continue execution

https://software.intel.com/security-software-guidance/insights/deep-dive-retpoline-branch-target-injection-mitigation

Retpoline for call

https://software.intel.com/security-software-guidance/insights/deep-dive-retpoline-branch-target-injection-mitigation

call *%rax

 jmp label2
Label0:
 call label1
capture_ret_spec:
 pause ; lfence
 jmp capture_ret_spec
Label1:
 mov %rax, (%rsp)
 ret
Label2:
 call label0
… continue execution

https://software.intel.com/security-software-guidance/insights/deep-dive-retpoline-branch-target-injection-mitigation

Retpoline for call

1

2

3

https://software.intel.com/security-software-guidance/insights/deep-dive-retpoline-branch-target-injection-mitigation

call *%rax

 jmp label2
Label0:
 call label1
capture_ret_spec:
 pause ; lfence
 jmp capture_ret_spec
Label1:
 mov %rax, (%rsp)
 ret
Label2:
 call label0
… continue execution

https://software.intel.com/security-software-guidance/insights/deep-dive-retpoline-branch-target-injection-mitigation

Retpoline for call

1

2

3

4
5 (5) Speculation (while waiting for the

mov to memory). Where? At the “trap”

https://software.intel.com/security-software-guidance/insights/deep-dive-retpoline-branch-target-injection-mitigation

call *%rax

 jmp label2
Label0:
 call label1
capture_ret_spec:
 pause ; lfence
 jmp capture_ret_spec
Label1:
 mov %rax, (%rsp)
 ret
Label2:
 call label0
… continue execution

https://software.intel.com/security-software-guidance/insights/deep-dive-retpoline-branch-target-injection-mitigation

Retpoline for call

1

2

3

4
5

6 To *(%rax), as that’s what was at top of stack

https://software.intel.com/security-software-guidance/insights/deep-dive-retpoline-branch-target-injection-mitigation

call *%rax

 jmp label2
Label0:
 call label1
capture_ret_spec:
 pause ; lfence
 jmp capture_ret_spec
Label1:
 mov %rax, (%rsp)
 ret
Label2:
 call label0
… continue execution

https://software.intel.com/security-software-guidance/insights/deep-dive-retpoline-branch-target-injection-mitigation

Retpoline for call

1

2

3

4
5

6

Function at *(%rax) returns here7

https://software.intel.com/security-software-guidance/insights/deep-dive-retpoline-branch-target-injection-mitigation

call *%rax

 jmp label2
Label0:
 call label1
capture_ret_spec:
 pause ; lfence
 jmp capture_ret_spec
Label1:
 mov %rax, (%rsp)
 ret
Label2:
 call label0
… continue execution

https://software.intel.com/security-software-guidance/insights/deep-dive-retpoline-branch-target-injection-mitigation

Retpoline for call

1

2

3

https://software.intel.com/security-software-guidance/insights/deep-dive-retpoline-branch-target-injection-mitigation

IBRS_FW
Talking about Spectre-v2, IBRS vs. retpoline

/sys/devices/system/cpu/vulnerabilities/spectre_v2:
Mitigation: full generic retpoline, IBPB: conditional, IBRS_FW,
 STIBP: conditional, RSB filling

Userspace

Task A

Compiled with retpoline enabled compiler: safe

IBRS_FW
Talking about Spectre-v2, IBRS vs. retpoline

/sys/devices/system/cpu/vulnerabilities/spectre_v2:
Mitigation: full generic retpoline, IBPB: conditional, IBRS_FW,
 STIBP: conditional, RSB filling

Userspace

Task A

Kernelsace

Compiled with retpoline enabled compiler: safe

retpoline enabled as in-kernel mitigation: safe

IBRS_FW
Talking about Spectre-v2, IBRS vs. retpoline

/sys/devices/system/cpu/vulnerabilities/spectre_v2:
Mitigation: full generic retpoline, IBPB: conditional, IBRS_FW,
 STIBP: conditional, RSB filling

Userspace

Task A

Kernelsace

Compiled with retpoline enabled compiler: safe

retpoline enabled as in-kernel mitigation: safe

Call into
BIOS/UEFI/
Firmware

● Is firmware using IBRS?
● Is firmware compiler with retpoline?

We can’t know: unsafe!

IBRS_FW
Talking about Spectre-v2, IBRS vs. retpoline

/sys/devices/system/cpu/vulnerabilities/spectre_v2:
Mitigation: full generic retpoline, IBPB: conditional, IBRS_FW,
 STIBP: conditional, RSB filling

Userspace

Task A

Kernelsace

Compiled with retpoline enabled compiler: safe

retpoline enabled as in-kernel mitigation: safe

Call into
BIOS/UEFI/
Firmware

● Is firmware using IBRS?
● Is firmware compiler with retpoline?

We can’t know: unsafe!

Wrap firmware calls/services around IBRS

IBRS

IBRS

Compiling switch() {...}
int global;

int foo3 (int x)

{

 switch (x) {

 case 0:

 return 11;

 case 1:

 return 123;

 case 2:

 global += 1;

 return 3;

 case 3:

 return 44;

 case 4:

 return 444;

 default:

 return 0;

 }

}

gcc jt.c -O2 -S -o/dev/stdout

.file "jt.c"

.text

.p2align 4,,15

.globlfoo3

.type foo3, @function

foo3:

.LFB0:

.cfi_startproc

cmpl $4, %edi

ja .L2

movl %edi, %edi

jmp *.L4(,%rdi,8)

.section .rodata

.align 8

.align 4

http://www.eventhelix.com/realtimemantra/Basics/CToAssemblyTranslation3.htm
https://en.wikipedia.org/wiki/Branch_table

.L4:

.quad .L9

.quad .L7

.quad .L6

.quad .L5

.quad .L3

.text

.p2align 4,,10

.p2align 3

.L9:

movl $11, %eax

ret

.p2align 4,,10

.p2align 3

.L3:

movl $444, %eax

ret

.p2align 4,,10

.p2align 3

.L6:

addl $1, global(%rip)

movl $3, %eax

ret

.p2align 4,,10

.p2align 3

.L5:

movl $44, %eax

ret

.p2align 4,,10

.p2align 3

.L7:

movl $123, %eax

ret

.p2align 4,,10

.p2align 3

.L2:

xorl %eax, %eax

ret

.cfi_endproc

http://www.eventhelix.com/realtimemantra/Basics/CToAssemblyTranslation3.htm
https://en.wikipedia.org/wiki/Branch_table

Compiling switch() {...}
int global;

int foo3 (int x)

{

 switch (x) {

 case 0:

 return 11;

 case 1:

 return 123;

 case 2:

 global += 1;

 return 3;

 case 3:

 return 44;

 case 4:

 return 444;

 default:

 return 0;

 }

}

gcc jt.c -O2 -S -o/dev/stdout

.file "jt.c"

.text

.p2align 4,,15

.globlfoo3

.type foo3, @function

foo3:

.LFB0:

.cfi_startproc

cmpl $4, %edi

ja .L2

movl %edi, %edi

jmp *.L4(,%rdi,8)

.section .rodata

.align 8

.align 4

http://www.eventhelix.com/realtimemantra/Basics/CToAssemblyTranslation3.htm
https://en.wikipedia.org/wiki/Branch_table

.L4:

.quad .L9

.quad .L7

.quad .L6

.quad .L5

.quad .L3

.text

.p2align 4,,10

.p2align 3

.L9:

movl $11, %eax

ret

.p2align 4,,10

.p2align 3

.L3:

movl $444, %eax

ret

.p2align 4,,10

.p2align 3

.L6:

addl $1, global(%rip)

movl $3, %eax

ret

.p2align 4,,10

.p2align 3

.L5:

movl $44, %eax

ret

.p2align 4,,10

.p2align 3

.L7:

movl $123, %eax

ret

.p2align 4,,10

.p2align 3

.L2:

xorl %eax, %eax

ret

.cfi_endproc

 Jump Table

http://www.eventhelix.com/realtimemantra/Basics/CToAssemblyTranslation3.htm
https://en.wikipedia.org/wiki/Branch_table

Compiling switch() {...}
int global;

int foo3 (int x)

{

 switch (x) {

 case 0:

 return 11;

 case 1:

 return 123;

 case 2:

 global += 1;

 return 3;

 case 3:

 return 44;

 case 4:

 return 444;

 default:

 return 0;

 }

}

gcc jt.c -O2 -S -o/dev/stdout

.file "jt.c"

.text

.p2align 4,,15

.globlfoo3

.type foo3, @function

foo3:

.LFB0:

.cfi_startproc

cmpl $4, %edi

ja .L2

movl %edi, %edi

jmp *.L4(,%rdi,8)

.section .rodata

.align 8

.align 4

http://www.eventhelix.com/realtimemantra/Basics/CToAssemblyTranslation3.htm
https://en.wikipedia.org/wiki/Branch_table

.L4:

.quad .L9

.quad .L7

.quad .L6

.quad .L5

.quad .L3

.text

.p2align 4,,10

.p2align 3

.L9:

movl $11, %eax

ret

.p2align 4,,10

.p2align 3

.L3:

movl $444, %eax

ret

.p2align 4,,10

.p2align 3

.L6:

addl $1, global(%rip)

movl $3, %eax

ret

.p2align 4,,10

.p2align 3

.L5:

movl $44, %eax

ret

.p2align 4,,10

.p2align 3

.L7:

movl $123, %eax

ret

.p2align 4,,10

.p2align 3

.L2:

xorl %eax, %eax

ret

.cfi_endproc

 Jump Table

● Faster (alternative: ~if/else)
● Better fits in cache
● Perf. independent than nr. cases

http://www.eventhelix.com/realtimemantra/Basics/CToAssemblyTranslation3.htm
https://en.wikipedia.org/wiki/Branch_table

Compiling switch() {...}

 normal retpoline retpo+no-JT retpo+JT=20 retpo+JT=40

cases: 8: 0.70 (100%) 2.98 (425%) 0.75 (107%) 0.75 (107%) 0.75 (107%)

cases: 16: 0.70 (100%) 2.98 (425%) 0.82 (117%) 0.82 (117%) 0.82 (117%)

cases: 32: 0.70 (100%) 3.01 (430%) 0.87 (124%) 2.98 (426%) 0.87 (124%)

cases: 64: 0.70 (100%) 3.52 (501%) 0.94 (134%) 3.52 (501%) 3.52 (501%)

cases: 128: 0.71 (100%) 3.51 (495%) 1.07 (151%) 3.50 (495%) 3.50 (494%)

cases: 256: 0.76 (100%) 3.14 (414%) 1.27 (167%) 3.14 (414%) 3.14 (414%)

cases: 1024: 1.46 (100%) 3.36 (230%) 1.49 (102%) 3.36 (230%) 3.36 (230%)

cases: 2048: 2.25 (100%) 3.19 (142%) 2.70 (120%) 3.19 (142%) 3.19 (142%)

cases: 4096: 2.90 (100%) 3.74 (129%) 4.48 (155%) 3.73 (129%) 3.72 (129%)

“I'm going to prepare a patch that will disable JTs for retpolines.”
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86952 (https://github.com/marxin/microbenchmark-1)

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86952
https://github.com/marxin/microbenchmark-1

Thanks Everyone!

Questions?

https://xkcd.com/1938/

Trolley problem

https://xkcd.com/1938/
https://en.wikipedia.org/wiki/Trolley_problem

